A series of CoFe/Cu multilayers were electrodeposited on Ti substrates from the electrolytes containing their metal ion under potentiostatic control, but the Fe concentration in the electrolytes was changed from 0.0125 M to 0.2 M. The deposition was carried out in a three-electrode cell at room temperature. The deposition of Cu layers was made at a cathode potential of -0.3 V with respect to saturated calomel electrode (SCE), while the ferromagnetic CoFe layers were deposited at -1.5 V versus SCE. The structural studies by X-ray diffraction revealed that the multilayers have face-centered-cubic structure. The magnetic characteristics of the films were investigated using a vibrating sample magnetometer and their easy-axis was found to be in film plane. Magnetoresistance measurements were carried out using the Van der Pauw method at room temperature with magnetic fields up to +/- 12 kOe. All multilayers exhibited giant magnetoresistance (GMR) and the GMR values up to 8% were obtained.
Ferromagnetic/non-ferromagnetic Co/Cu superlattices were grown on polycrystalline Titanium (Ti) from a single electrolyte by electrodeposition. Microstructure and magnetoresistance (MR) of the superlattices were investigated as a function of the electrolyte pH as well as the layer thicknesses. Structural characterisation by X-ray diffraction (XRD) showed that the superlattices have face-centred cubic (fcc) structure with a strong (111) texture at the studied pH levels, but the texture degree is affected by the electrolyte pH. The scanning electron microscope (SEM) studies revealed that the superlattices grown at low pH (2.0) have smoother surfaces compared to those grown at high pH (3.0). The superlattices exhibited either anisotropic magnetoresistance (AMR) or giant magnetoresistance (GMR) depending on the Cu layer thickness. The shape of MR curves changes depending on the combination of Co and Cu layer thicknesses. The superlattices with Co layers less than 3 nm and Cu layers less than 2 nm have broad and non-saturating curves, indicating the predominance of a superparamagnetic contribution, possibly due to the discontinuous nature of the ferromagnetic (Co) layer. For superlattices with the same bilayer and total thicknesses, the GMR magnitude decreased as the electrolyte pH increased. Besides possible structural differences such as the texture degree and the surface roughness, this may arises from the variation in the Cu content of the ferromagnetic layers caused by the electrolyte pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.