The molecular mechanism of human mitochondrial translation has yet to be fully described. We are particularly interested in understanding the process of translational termination and ribosome recycling in the mitochondrion. Several candidates have been implicated, for which subcellular localization and characterization have not been reported. Here, we show that the putative mitochondrial recycling factor, mtRRF, is indeed a mitochondrial protein. Expression of human mtRRF in fission yeast devoid of endogenous mitochondrial recycling factor suppresses the respiratory phenotype. Further, human mtRRF is able to associate with Escherichia coli ribosomes in vitro and can associate with mitoribosomes in vivo. Depletion of mtRRF in human cell lines is lethal, initially causing profound mitochondrial dysmorphism, aggregation of mitoribosomes, elevated mitochondrial superoxide production and eventual loss of OXPHOS complexes. Finally, mtRRF was shown to co-immunoprecipitate a large number of mitoribosomal proteins attached to other mitochondrial proteins, including putative members of the mitochondrial nucleoid.
Two-dimensional blue native/SDS-PAGE is widely applied to investigate native protein-protein interactions, particularly those within membrane multi-protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we investigated the potential of using LC-MS/MS as an alternative for SDS-PAGE in blue native (BN) analysis of protein complexes. By subjecting equal slices from BN gel lanes to label-free semi-quantitative LC-MS/MS, we determined an abundance profile for each protein across the BN gel, and used these profiles to identify potentially interacting proteins by protein correlation profiling. We demonstrate the feasibility of this approach by considering the oxidative phosphorylation complexes I-V in the native human embryonic kidney 293 mitochondrial fraction, showing that the method is capable of detecting both the fully assembled complexes as well as assembly/turnover intermediates of complex I (NADH:ubiquinone oxidoreductase). Using protein correlation profiling with a profile for subunits NDUFS2, 3, 7 and 8 we identified multiple proteins possibly involved in the biogenesis of complex I, including the recently implicated chaperone C6ORF66 and a novel candidate, C3ORF60.
Methanothermobacter thermautotrophicus is a thermophilic archaeon that produces methane as the end product of its primary metabolism. The biochemistry of methane formation has been extensively studied and is catalyzed by individual enzymes and proteins that are organized in protein complexes. Although much is known of the protein complexes involved in methanogenesis, only limited information is available on the associations of proteins involved in other cell processes of M. thermautotrophicus. To visualize and identify interacting and individual proteins of M. thermautotrophicus on a proteomewide scale, protein preparations were separated using blue native electrophoresis followed by SDS-PAGE. A total of 361 proteins, corresponding to almost 20% of the predicted proteome, was identified using peptide mass fingerprinting after MALDI-TOF MS. All previously characterized complexes involved in energy generation could be visualized. Furthermore the expression and association of the heterodisulfide reductase and methylviologen-reducing hydrogenase complexes depended on culture conditions. Also homomeric supercomplexes of the ATP synthase stalk subcomplex and the N 5 -methyl-5,6,7,8-tetrahydromethanopterin:coenzyme M methyltransferase complex were separated. Chemical cross-linking experiments confirmed that the multimerization of both complexes was not experimentally induced. A considerable number of previously uncharacterized protein complexes were reproducibly visualized. These included an exosome-like complex consisting of four exosome core subunits, which associated with a tRNA-intron endonuclease, thereby expanding the constituency of archaeal exosomes. The results presented show the presence of novel complexes and demonstrate the added value of including blue native gel electrophoresis followed by SDS-PAGE in discovering protein complexes that are involved in catabolic, anabolic, and general cell processes.
Surf1p is a protein involved in the assembly of mitochondrial respiratory chain complexes. However its exact role in this process remains to be elucidated. We studied SHY1, the yeast homologue of SURF1, with an aim to obtain a better understanding of the molecular pathogenesis of cytochrome c oxidase (COX) deficiency in SURF1 mutant cells from Leigh syndrome patients. Assembly of COX was analysed in a shy1 null mutant strain by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Steady-state levels of the enzyme were found to be strongly reduced, the total amount of assembled complex being approximately 30% of control. The presence of a significant amount of holo-COX in the SHY1-disruptant strain suggests that Shy1p may either facilitate assembly of the enzyme, or increase its stability. However, our observations, based on 2D-PAGE analysis of mitochondria labelled in vitro, now provide the first direct evidence that COX assembly is impaired in a v vshy1 strain. COX enzyme assembled in the absence of Shy1p appears to be structurally and enzymically normal. The in vitro labelling studies additionally indicate that mitochondrial translation is significantly increased in the shy1 null mutant strain, possibly reflecting a compensatory mechanism for reduced respiratory capacity. Protein interactions of both Shy1p and Surf1p are implied by their appearance in a high molecular weight complex of about 250 kDa, as shown by 2D-PAGE. ß 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.