A new second-order method for approximating the compressible Euler equations is introduced. The method preserves all the known invariant domains of the Euler system: positivity of the density, positivity of the internal energy and the local minimum principle on the specific entropy. The technique combines a first-order, invariant domain preserving, Guaranteed Maximum Speed method using a Graph Viscosity (GMS-GV1) with an invariant domain violating, but entropy consistent, high-order method. Invariant domain preserving auxiliary states, naturally produced by the GMS-GV1 method, are used to define local bounds for the high-order method which is then made invariant domain preserving via a convex limiting process. Numerical tests confirm the second-order accuracy of the new GMS-GV2 method in the maximum norm, where 2 stands for second-order. The proposed convex limiting is generic and can be applied to other approximation techniques and other hyperbolic systems.1 γ−1 ρ −1 ) for a polytropic ideal gas. Using the notation s e (ρ, e) := ∂s ∂e (ρ, e) and s ρ (ρ, e) := ∂s ∂ρ (ρ, e), the equation of state then takes the form p := −ρ 2 s ρ s −1 e . To simplify the notation we introduce the Note that (2.9) implies j∈{1: I} c ij = 0. Furthermore, if either ϕ i or ϕ j is zero on ∂D, then c ij = −c ji . In particular we have i∈{1: I} c ij = 0 if ϕ j is zero on ∂D. This property will be used to establish conservation.
This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213], a high-order entropy viscosity method, and the Boris-Book-Zalesak flux correction technique. The algorithm works for arbitrary meshes in any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method and its convergence properties are tested on a series of linear and nonlinear benchmark problems. Kružkov [20] and Bardos, le Roux, and Nédélec [2]).
Mesh.Let {K h } h>0 be a mesh family that we assume to be affine, conforming (no hanging nodes), and shape-regular in the sense of Ciarlet. By convention, the elements in K h are closed in Ê d . We may have different reference elements, but always
We present a framework for adaptive finite element computation of turbulent flow and fluid-structure interaction, with focus on general algorithms that allow for complex geometry and deforming domains. We give basic models and finite element discretization methods, adaptive algorithms and strategies for efficient parallel implementation. To illustrate the capabilities of the computational framework, we show a number of application examples from aerodynamics, aero-acoustics, biomedicine and geophysics. The computational tools are free to download open source as Unicorn, and as a high performance branch of the finite element problem solving environment DOLFIN, both part of the FEniCS project.
The high order spectral element approximation of the Euler equations is stabilized via a dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite elements to solve compressible flows at large Mach numbers. We extend its application to high-order spectral elements to solve the Euler equations of low Mach number stratified flows. The major justification of this work is twofold: stabilization and large eddy simulation are achieved via one scheme only.Because the di usion coe cients of the regularization stresses obtained via Dyn-SGS are residual-based, the e ect of the artificial di usion is minimal in the regions where the solution is smooth. The direct consequence is that the nominal convergence rate of the high-order solution of smooth problems is not degraded. To our knowledge, this is the first application in atmospheric modeling of a spectral element model stabilized by an eddy viscosity scheme that, by construction, may fulfill stabilization requirements, can model turbulence via LES, and is completely free of a user-tunable parameter.From its derivation, it will be immediately clear that Dyn-SGS is independent of the numerical method; it could be implemented in a discontinuous Galerkin, finite volume, or other environments alike. Preliminary discontinuous Galerkin results are reported as well. The straightforward extension to non-linear scalar problems is also described. A suite of 1D, 2D, and 3D test cases is used to assess the method, with some comparison against the results obtained with the most known Lilly-Smagorinsky SGS model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.