Background: Sex determination is one of the leading criterion in identification and verification of an individual. However, the potential roles of differences in adjacent fingerprint white line count (FWLC) in sex inference are not well elucidated in the literature especially among Hausa population. The study was conducted to determine sexual dimorphism and predict sex using adjacent digit FWLC difference (adj. DFWLCD) among Hausa population of Kano state, Nigeria. Methods: The study population involved 300 participants. FWLC was determined from a plain fingerprint captured using live scanner. The formula for adj. DFWLCD of thumb and fifth digit is dR15 for right hand. The same applied for possible combination in cephalocaudal direction. Mann-Whitney and t tests were used for comparison of variables between sexes. Binary logistic regression analyses were employed for determination of sex. Results: We observed a significantly larger adj. DFWLCD in males compared with females in most of the digit combination. A significant sexual dimorphism was observed in most of the adj. DFWLCD involving ring digit in both right (dR14, dR24, and dR34) and left (dL14, dL24, and dL34). The best discrimination was observed in adjacent FWLC difference of second and fourth digits in both right and left digits (dR24 and dL24). This was further supported by stepwise logistic regression analyses. Conclusion: The adj. DFWLCD exhibits sexual dimorphism. The best prediction potentials were found to be dR24 and dL24 for right and left hands respectively.
Microcolon is a radiographic feature of a low intestinal obstruction that result from intrauterine underutilization or what is term unused colon. The finding of microcolon on contrast enema study in newborn with distended abdomen usually suggests jejunoileal obstruction, jejunoileal atresia, meconium ileus, or occasionally totals colonic agangliosis. We are therefore presenting this case to highlight the wonders that imaging will perform in prompt diagnosis and management of this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.