Accurate and computationally efficient means of classifying surface myoelectric signals has been the subject of considerable research effort in recent years. The aim of this paper is to classify myoelectric signals using new fuzzy clustering neural network (NN) architectures to control multifunction prostheses. This paper presents a comparative study of the classification accuracy of myoelectric signals using multilayered perceptron NN using back-propagation, conic section function NN, and new fuzzy clustering NNs (FCNNs). The myoelectric signals considered are used in classifying six upper-limb movements: elbow flexion, elbow extension, wrist pronation and wrist supination, grasp, and resting. The results suggest that FCNN can generalize better than other NN algorithms and help the user learn better and faster. This method has the potential of being very efficient in real-time applications.
End effector tracking control of robot manipulators subject to dynamical uncertainties is the main objective of this article. Direct task space control that aims minimizing the end effector tracking error directly is preferred. In the open loop error system, the vector that depends on uncertain dynamical terms is modeled via a fuzzy logic network and a self-adjusting adaptive fuzzy logic component is designed as part of the nonlinear proportional derivative based control input torque. The stability of the closed-loop system is investigated via Lyapunov based arguments and practical tracking is proven. The viability of the proposed control strategy is shown with experimental results. Extensions to uncertain Jacobian case and kinematically redundant robots are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.