Synopsis
Spinal cord injuries (SCI) can disrupt communications between the brain and the body, leading to a loss of control over otherwise intact neuromuscular systems. The use of electrical stimulation (ES) of the central and peripheral nervous system can take advantage of these intact neuromuscular systems to provide therapeutic exercise options, to allow functional restoration, and even to manage or prevent many medical complications following SCI. The use of ES for the restoration of upper extremity, lower extremity and truncal functions can make many activities of daily living a potential reality for individuals with SCI. Restoring bladder and respiratory functions and preventing pressure ulcers may significantly decrease the morbidity and mortality following SCI. Many of the ES devices are already commercially available and should be considered by all SCI clinicians routinely as part of the lifelong rehabilitation care plan for all eligible individuals with SCI.
A comparative study of four different muscle models in a musculoskeletal motion problem is made. The models vary in complexity from the simple input-output model to the more complex model of Hatze [1]. These models are used to solve a minimum time kicking problem using an optimal control algorithm. The results demonstrate the strong influence of the model choice on the various predicted kinematic and kinetic parameters in the problem. The study illustrates some of the advantages and disadvantages involved in trade-offs between model complexity and practicability in musculoskeletal motion studies. The results also illustrate the importance of appropriate detailed parameter estimation studies in the mathematical modeling of the musculoskeletal system.
Objective
To determine the stimulated strength of the paralyzed gluteal and paraspinal muscles and their effects on the seated function of individuals with paralysis.
Design
Case series with subjects acting as their own concurrent controls.
Setting
Hospital-based clinical biomechanics laboratory.
Participants
Eight users of implanted neuroprostheses for lower extremity function with low-cervical or thoracic level injuries.
Interventions
Dynamometry and digital motion capture both with and without stimulation to the hip and trunk muscles.
Main Outcome Measure(s)
Isometric trunk extension moment at 0, 15 and 30 degrees of flexion; seated stability in terms of simulated isokinetic rowing; pelvic tilt, shoulder height, loaded and unloaded bimanual reaching to different heights, and subjective ratings of difficulty during unsupported sitting.
Results
Stimulation produced significant increases in mean trunk extension moment (9.2±9.5Nm, p=0.0001) and rowing force (27.4±23.1N, p=0.0123) over baseline volitional values. Similarly, stimulation induced positive changes in average pelvic tilt (16.7±15.7deg) and shoulder height (2.2±2.5cm) during quiet sitting and bimanual reaching, and increased mean reach distance (5.5±6.6cm) over all subjects, target heights and loading conditions. Subjects consistently rated tasks with stimulation easier than voluntary effort alone.
Conclusions
In spite of considerable inter-subject variability, stabilizing the paralyzed trunk with electrical stimulation can positively impact seated posture, extend forward reach and allow exertion of larger forces on objects in the environment.
This study determined the feasibility and performance of center of mass (COM) acceleration feedback control of a neuroprosthesis utilizing functional neuromuscular stimulation (FNS) to restore standing balance to a single subject paralyzed by a motor and sensory complete, thoracic-level spinal cord injury (SCI). An artificial neural network (ANN) was created to map gain-modulated changes in total body COM acceleration estimated from body-mounted sensors to optimal changes in stimulation required to maintain standing. Feedback gains were systematically tuned to minimize the upper extremity (UE) loads applied by the subject to an instrumented support device during internally generated postural perturbations produced by volitional reaching and object manipulation. Total body COM acceleration was accurately estimated (> 90% variance explained) from two three-dimensional (3-D) accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, COM acceleration feedback control of stimulation improved standing performance by reducing the UE loading required to resist internal postural disturbances by 27%. This case study suggests that COM acceleration feedback could potentially be advantageous in a standing neuroprosthesis since it can be implemented with only a few feedback parameters and requires minimal instrumentation for comprehensive, 3-D control of dynamic standing function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.