Abstract. Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time-and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse-grained approaches. We examine uses of different sampling methods, as well as free energy calculations. Furthermore, we review computational studies of protein-surface interactions and discuss the successes and limitations of current approaches.
The simulation of diffusional association (SDA) Brownian dynamics software package has been widely used in the study of biomacromolecular association. Initially developed to calculate bimolecular protein–protein association rate constants, it has since been extended to study electron transfer rates, to predict the structures of biomacromolecular complexes, to investigate the adsorption of proteins to inorganic surfaces, and to simulate the dynamics of large systems containing many biomacromolecular solutes, allowing the study of concentration‐dependent effects. These extensions have led to a number of divergent versions of the software. In this article, we report the development of the latest version of the software (SDA 7). This release was developed to consolidate the existing codes into a single framework, while improving the parallelization of the code to better exploit modern multicore shared memory computer architectures. It is built using a modular object‐oriented programming scheme, to allow for easy maintenance and extension of the software, and includes new features, such as adding flexible solute representations. We discuss a number of application examples, which describe some of the methods available in the release, and provide benchmarking data to demonstrate the parallel performance. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Kar1 interacts with the C-terminal (CT) region of Sfi1 to tether the yeast centrosome’s bridge to the nuclear envelope; Sfi1-CT and C-terminal Cdc31-binding regions form the antiparallel Sfi1 overlap in the bridge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.