Sleep is a fundamental homeostatic process, and disorders of sleep can greatly affect quality of life. Parkinson's disease (PD) is highly comorbid for a spectrum of sleep disorders and deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been reported to improve sleep architecture in PD. We studied local field potential (LFP) recordings in PD subjects undergoing STN-DBS over the course of a full-night's sleep. We examined the changes in oscillatory activity recorded from STN between ultradian sleep states to determine whether sleep-stage dependent spectral patterns might reflect underlying dysfunction. For this study, PD (n=10) subjects were assessed with concurrent polysomnography and LFP recordings from the DBS electrodes, for an average of 7.5 hours in 'off' dopaminergic medication state. Across subjects, we found conserved spectral patterns among the canonical frequency bands (delta 0-3 Hz, theta 3-7 Hz, alpha 7-13 Hz, beta 13-30 Hz, gamma 30-90 Hz and high frequency 90-350 Hz) that were associated with specific sleep cycles: delta (0-3 Hz) activity during non-rapid eye movement (NREM) associated stages was greater than during Awake, whereas beta (13-30 Hz) activity during NREM states was lower than Awake and rapid eye movement (REM). In addition, all frequency bands were significantly different between NREM states and REM. However, each individual subject exhibited a unique mosaic of spectral interrelationships between frequency bands. Our work suggests that LFP recordings from human STN differentiate between sleep cycle states, and sleep-state specific spectral mosaics may provide insight into mechanisms underlying sleep pathophysiology.
Although motor subtypes of Parkinson's disease (PD), such as tremor dominant (TD) and postural instability and gait difficulty (PIGD), have been defined based on symptoms since the mid-1990s, no underlying neural correlates of these clinical subtypes have yet been identified. Very limited data exist regarding the electrophysiological abnormalities within the subthalamic nucleus (STN) that likely accompany the symptom severity or the phenotype of PD. Here, we show that activity in subbands of local field potentials (LFPs) recorded with multiple microelectrodes from subterritories of STN provide distinguishing neurophysiological information about the motor subtypes of PD. We studied 24 patients with PD and found distinct patterns between TD ( = 13) and PIGD ( = 11) groups in high-frequency oscillations (HFOs) and their nonlinear interactions with beta band in the superior and inferior regions of the STN. Particularly, in the superior region of STN, the power of the slow HFO (sHFO) (200-260 Hz) and the coupling of its amplitude with beta-band phase were significantly stronger in the TD group. The inferior region of STN exhibited fast HFOs (fHFOs) (260-450 Hz), which have a significantly higher center frequency in the PIGD group. The cross-frequency coupling between fHFOs and beta band in the inferior region of STN was significantly stronger in the PIGD group. Our results indicate that the spatiospectral dynamics of STN-LFPs can be used as an objective method to distinguish these two motor subtypes of PD. These observations might lead to the development of sensing and stimulation strategies targeting the subterritories of STN for the personalization of deep-brain stimulation (DBS).
Gender has an influence on the characteristics of the headache as well as on the associated symptoms in migraine patients, and this impact varies across the age groups, particularly in women.
Objective Cross‐frequency coupling has been reported in the STN of patients with PD, but its significance and functional role are still not well understood. This study investigates pharmacological modulations of subthalamic oscillations and their nonlinear cross‐frequency interactions across three consecutive cycles over unique 24‐hour‐long recordings. Background Identifying neurobiomarkers for PD can drive the development of novel personalized treatments by providing objective assessment of impairment. In particular, distinct frequency bands in LFP recordings and their interaction with one another have been shown to modulate with dopaminergic medication and thus, proposed as such biomarkers. Methods We recorded local field potentials 3 weeks postoperatively from externalized leads in 9 patients and correlated the neural patterns with improvements in motor signs over three medication intake cycles. We used two modalities to assess symptoms in the unmedicated OFF and the l‐dopa–induced motor ON state: a subsection of the UPDRS and a keyboard tapping score measuring bradykinesia. Results In the OFF state, the amplitude of high‐frequency oscillations in the 200‐ to 300‐Hz range was coupled with the phase of low‐beta (13–22 Hz) in all patients. After transition to the ON state, three distinct coupling patterns were observed among subjects. Among these, patients showing ON coupling between high‐beta (22–30 Hz) and high‐frequency oscillations in the 300‐ to 400‐Hz range had significantly greater improvement in bradykinesia, according to the keyboard scores. Conclusion Observing diminished coupling in the ON state, previous studies have hypothesized that the sole existence of coupling in STN has an “impeding” effect on normal processes, and thus it was considered to be pathological. In contrast, our observation of ON state coupling at distinct frequencies associated with the improvements in motor features suggest that the underlying mechanism of coupling might have impeding or enhancing effects depending on the coupled frequencies. © 2019 International Parkinson and Movement Disorder Society
Despite having remarkable utility in treating movement disorders, the lack of understanding of the underlying mechanisms of high-frequency deep brain stimulation (DBS) is a main challenge in choosing personalized stimulation parameters. Here we investigate the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson’s disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130–180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment. Along with HFOs, we also observed evoked compound activity (ECA) after each stimulation pulse. While ECA was observed in both therapeutic and non-therapeutic (20 Hz) stimulation, the HFOs were induced only with therapeutic frequencies, and the associated ECA were significantly more resonant. The relative degree of enhancement in the HFO power was related to the interaction of stimulation pulse with the phase of ECA. We propose that high-frequency STN-DBS tunes the neural oscillations to their healthy/treated state, similar to pharmacological treatment, and the stimulation frequency to maximize these oscillations can be inferred from the phase of ECA waveforms of individual subjects. The induced HFOs can, therefore, be utilized as a marker of successful re-calibration of the dysfunctional circuit generating PD symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.