We present an isogeometric analysis technique that builds on manifold-based smooth basis functions for geometric modelling and analysis. Manifold-based surface construction techniques are well known in geometric modelling and a number of variants exist. Common to all is the concept of constructing a smooth surface by blending together overlapping patches (or, charts), as in differential geometry description of manifolds. Each patch on the surface has a corresponding planar patch with a smooth one-to-one mapping onto the surface. In our implementation, manifold techniques are combined with conformal parameterisations and the partition-of-unity method for deriving smooth basis functions on unstructured quadrilateral meshes. Each vertex and its adjacent elements on the surface control mesh have a corresponding planar patch of elements. The star-shaped planar patch with congruent wedge-shaped elements is smoothly parameterised with copies of a conformally mapped unit square. The conformal maps can be easily inverted in order to compute the transition functions between the different planar patches that have an overlap on the surface. On the collection of star-shaped planar patches the partition of unity method is used for approximation.The smooth partition of unity, or blending functions, are assembled from tensor-product b-spline segments defined on a unit square. On each patch a polynomial with a prescribed degree is used as a local approximant. In order to obtain a mesh-based approximation scheme the coefficients of the local approximants are expressed in dependence of vertex coefficients. This yields a basis function for each vertex of the mesh which is smooth and non-zero over a vertex and its adjacent elements. Our numerical simulations indicate the optimal convergence of the resulting approximation scheme for Poisson problems and near optimal convergence for thin-plate and thin-shell problems discretised with structured and unstructured quadrilateral meshes.
Summary We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin‐shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff‐Love shell equation is discretised with the finite element method and the Helmholtz equation for the acoustic field with the boundary element method. The use of the boundary element formulation allows the elegant handling of infinite domains and precludes the need for volumetric meshing. In the present work, the subdivision control meshes for the shell displacements and the acoustic pressures have the same resolution. The corresponding smooth subdivision basis functions have the C1 continuity property required for the Kirchhoff‐Love formulation and are highly efficient for the acoustic field computations. We verify the proposed isogeometric formulation through a closed‐form solution of acoustic scattering over a thin‐shell sphere. Furthermore, we demonstrate the ability of the proposed approach to handle complex geometries with arbitrary topology that provides an integrated isogeometric design and analysis workflow for coupled structural‐acoustic analysis of shells.
We demonstrate a method for simulating medium-wave acoustic scattering over elastic thin shell structures. We propose a coupled approach whereby the finite element formulation is used to describe the dynamic structural response of the shell and the boundary element method models the acoustic pressure within the infinite acoustic domain. The two methods are coupled through the relationship between acoustic velocities on the structural-fluid interface. In our approach, a conforming subdivision discretization is generated in Computer Aided Design (CAD) software which can be used directly for analysis in keeping with the idea of isogeometric analysis whereby a common geometry and analysis model is adopted. The subdivision discretization provides C1 surface continuity which satisfies the challenging continuity requirements of Kirchhoff-Love shell theory. The new method can significantly reduce the number of elements required per wavelength to gain same accuracy as an equivalent Lagrangian discretization, but the main benefit of our approach is the ability to handle arbitrarily complex geometries with smooth limit surfaces directly from CAD software. Our implementation make use of H-matrices to accelerate dense matrix computations and through this approach, we demonstrate the ability of our method to handle high-fidelity models with smooth surfaces for structural-acoustic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.