Metal foams are a cellular structure that has a solid matrix made of metal and has pores in their structure. Metal foams offer excellent combination of properties which led researchers interested in investigation in recent years. Closed-cell stainless steel (SS316L) foams for biomedical application were prepared by space holder method and the physical and morphological properties of SS316L foams were studied. Stainless steel (SS316L) powders as metallic material, polyethylene glycol (PEG) as a binder and Urea as a space holder material were mixed homogenously to avoid the particle wrecked. This mixture was compacted using uniaxial pressing machine and pressurized to 8 tons to formed the green body. By using tube furnace, the SS316L foams was two-stage sintered, the first phase at 600°C for 2 hours to decompose the urea, and the second phase at 1000°C, 1100°C, and 1200°C respectively to sinter the steel. The porosity and density test was carried out by applying Archimedean principles, while morphological observation was done by using Field Emission Scanning Electron (FESEM). The samples with 40wt.% SS316L composition and sintered at temperature of 1100°C, leads to porosities of about 44.539% and show the potential as the best metal foams.
Abstract. Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a 1'x1' test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.