Primary cilia can act as either a negative or positive regulator of the hedgehog (Hh) signaling pathway. Many cartilage tumors are characterized by abnormal activation of the Hh pathway. Here, we report that the presence of primary cilia occurs at a low frequency (12.4%) in neoplastic chondrocytes from malignant human chondrosarcomas, compared with chondrocytes from normal articular cartilage (67.7%). To determine the function of primary cilia in cartilaginous neoplasia, we studied benign cartilage tumors that are formed in mice by chondrocyte-specific overexpression of Gli2, a downstream transcriptional activator of the Hh pathway. Col2A1-Gli2 mice were crossed with Ift88+/− mice, which display a partial loss of ciliogenesis. Surprisingly, cartilage tumors developed in Ift88+/− mice that were phenotypically similar to those that arise in Col2A1-Gli2 mice. Further activation of the Hh pathway was observed in Col2A1-Gli2; Ift88+/− mice compared with either Col2A1-Gli2 or Ift88+/− mice, which was associated with an increased incidence of cartilage tumors. Chondrosarcomas were established in explant cultures, and treated with choral hydrate, which disrupts the functional primary cilia. Thus, treatment resulted in hyperactivity of the Hh signaling pathway, as well as cellular changes that could promote tumor growth. Primary cilia functions to inhibit Hh signaling in neoplastic chondrocytes. The activation of Hh signaling is sufficient to induce benign cartilage tumors without another oncogenic initiating event. Moreover, as primary cilia suppress Hh pathway activation in chondrosarcoma, cellular mechanisms inhibiting proper cilia function may be important in maintaining the neoplastic phenotype.
ObjectiveWith no effective therapies to attenuate cartilage degeneration in osteoarthritis (OA), the result is pain and disability. Activation of hedgehog (HH) signaling causes changes related to the progression of OA, with higher levels of Gli‐mediated transcriptional activation associated with increased disease severity. To elucidate the mechanism through which this occurs, this study sought to identify genes regulated by HH signaling in human OA chondrocytes.MethodsUsing human OA cartilage samples, microarray analyses were performed to detect changes in gene expression when the HH pathway was modulated. Results were analyzed for differentially expressed genes, grouped into functional networks, and validated in independent samples. To investigate the effects of chondrocyte‐specific sterol accumulation, we generated mice lacking Insig1 and Insig2, which are major negative regulators of cholesterol homeostasis, under Col2a1 regulatory elements.ResultsHH signaling was found to regulate genes that govern cholesterol homeostasis, and this led to alterations in cholesterol accumulation in chondrocytes. A higher level of Gli‐mediated transcription resulted in accumulation of intracellular cholesterol. In genetically modified mice, chondrocyte‐specific cholesterol accumulation was associated with an OA phenotype. Reducing cholesterol accumulation attenuated the severity of OA in mice in vivo and decreased the expression of proteases in human OA cartilage in vitro.ConclusionHH signaling regulates cholesterol homeostasis in chondrocytes, and intracellular cholesterol accumulation contributes to the severity of OA. Our findings have therapeutic implications, since reduction of HH signaling reversed cholesterol accumulation and statin treatment attenuated cartilage degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.