The tunneling system has become an important part of the present infrastructure system in all over the world. Therefore, it has become important to ensure the safety of the tunnels against any type of man-made blasting activities or other accidental blasting occurrence. In order to evaluate the performance of the tunnels against blast loading, a detailed review is carried out. Based on the review in the last couple of decades, the various parameters such as tunnel lining materials, tunnel shapes, tunnel lining thickness, tunnel burial depth, charge weight and standoff distance are high influences on the performance of underground tunnels against blast loading. It was observed that the tunnel roof and the tunnel wall center are most vulnerable to the blast loads. Also, it was found that more of the tunnel lining thickness results in lesser deformation at the tunnel roof and the tunnel wall center. The increase in the burial depth of the tunnel would reduce the extent of damage to the tunnel caused by effects of surface blast loading. The stiffness and strength of the ground media may be enhanced against the effects of blast loading by grouting measures. The studies revealed that the lining materials possessing blast waves absorbing properties can be best suited to be used in tunnel linings. Further, it was observed that more damage was caused to the tunnels due to the magnitude of the charge weight. An increase in the blast load causes a significant increase in the fracture area, residual stress and lateral displacement caused to the tunnel by the action of blast load. The standoff distance of the blast load from the tunnel also plays a significant role in the damage of the tunnel. More is the distance between the charge and the tunnel, lesser damage caused to the tunnels. In addition to that, the lining thickness was predicted and the trend was calibrated and fitted logarithmically with the available results. Based on the observation from the literature, it is concluded that the use of a single lining material in the tunnel against blast loading was studied predominantly in the couple of decades. Further, the performance of the tunnels in combination of different tunnel lining materials against blast loading was found limited. The influence of barriers to save the underground tunnels against blast loading was found limited.
An evaluation of mitigation strategies of underground tunnels against explosions is important to the society. Therefore, a small scale tunnel was modeled against blast loading using finite element software ABAQUS. The inelastic behavior of concrete and steel bar has been incorporated through concrete damage plasticity model and Johnson-cook models respectively, available in ABAQUS. The Drucker-Prager model as well as acoustic infinite medium have been used to model the damage behavior of soil and tunnel respectively. The simulated results thus obtained from the present study were compared with the experimental results available in the literature and found in good agreement. Further, the simulations were carried to predict the damage intensity in tunnel in terms of acceleration, impulse velocity, displacement, and Mises stresses. There are many parameters which were taken into consideration to assess the mitigation strategies for the underground tunnels. The critical parameters include the influence of tunnel shapes, lining materials, lining thickness, burial depth of the tunnels, inclusion of a barrier in between the blast source-the tunnel and layered configuration of tunnel lining, and were considered to evaluate the mitigation strategy. It was concluded that the square shape of tunnel was most vulnerable as compared to circular and U-shaped tunnels. It was also concluded that plain concrete monolithic lining as well as layered configuration consisting of Dytherm foam layer between Steel Fiber reinforced Concrete layers, was found to be more vulnerable among the chosen lining materials. Also, the thickness of lining and burial depth of the tunnel found to be a significant role against blast loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.