BackgroundMolecular methods that target drug resistance mutations are suitable approaches for rapid drug susceptibility testing to detect multidrug-resistant tuberculosis (MDR-TB). The aim of the study was to determine MDR-TB cases and to analyze the frequency of gene mutations associated with rifampicin (RIF) and/or isoniazid (INH) resistance of Mycobacterium tuberculosis among smear-positive pulmonary tuberculosis patients.MethodsInstitution-based cross-sectional study design was employed. Sputum specimens were collected, and using a pretested questionnaire, data for associated risk factors for drug resistance were collected from 105 consecutive smear-positive pulmonary tuberculosis patients in Karamara General Hospital. Specimens were transported to Harar Health Research and Regional Laboratory, Harar, where molecular drug susceptibility testing was performed using GenoType® MTBDRplus assay.ResultsOf the total 105 sputum specimens, 98 (93.3%) gave interpretable results, in which 67 (68.4%) were new cases and 31 (31.6%) were previously treated cases. Of these, 80 (81.6%) were sensitive to both drugs and 18 (18.4%) were resistant to RIF and/or INH. The prevalences of MDR-TB in total cases, new, and previously treated cases were 10 (10.2%), 3 (4.5%), and 7 (22.6%), respectively. Among the ten total RIF-resistant specimens, eight (80%) had resulted because of absence of rpoB WT8 and presence of MUT3 and in all specimens, the amino acids changed were Ser531Lue. Of the 18 total INH-resistant specimens, 15 (83.3%) had mutations in the katG gene (katG MUT1, Ser315Thr1), indicating high-level resistance, while 3 (14.7%) had mutations in the inhA promoter gene (Cys15Thr), indicating low-level resistance.ConclusionAmong the mutations associated with resistance to RIF and INH, the majority were in codon 531 of the rpoB gene and codon 315 of the katG gene. Relatively high prevalence of MDR-TB was observed in the study.
IntroductionUndernutrition is an underlying cause of mortality in children under five (CU5) years of age. Animal-source foods have been shown to decrease malnutrition in CU5. Livestock are important reservoirs for Campylobacter bacteria, which are recognised as risk factors for child malnutrition. Increasing livestock production may be beneficial for improving nutrition of children but these benefits may be negated by increased exposure to Campylobacter and research is needed to evaluate the complex pathways of Campylobacter exposure and infection applicable to low-income and middle-income countries. We aim to identify reservoirs of infection with Campylobacter spp. of infants in rural Eastern Ethiopia and evaluate interactions with child health (environmental enteric dysfunction and stunting) in the context of their sociodemographic environment.Methods and analysisThis longitudinal study involves 115 infants who are followed from birth to 12 months of age and are selected randomly from 10 kebeles of Haramaya woreda, East Hararghe zone, Oromia region, Ethiopia. Questionnaire-based information is obtained on demographics, livelihoods, wealth, health, nutrition and women empowerment; animal ownership/management and diseases; and water, sanitation and hygiene. Faecal samples are collected from infants, mothers, siblings and livestock, drinking water and soil. These samples are analysed by a range of phenotypic and genotypic microbiological methods to characterise the genetic structure of the Campylobacter population in each of these reservoirs, which will support inference about the main sources of exposure for infants.Ethics and disseminationEthical approval was obtained from the University of Florida Internal Review Board (IRB201903141), the Haramaya University Institutional Health Research Ethics Committee (COHMS/1010/3796/20) and the Ethiopia National Research Ethics Review Committee (SM/14.1/1059/20). Written informed consent is obtained from all participating households. Research findings will be disseminated to stakeholders through conferences and peer-reviewed journals and through the Feed the Future Innovation Lab for Livestock Systems.
Introduction: Coronavirus disease 2019 (COVID-19) is a public health emergency with little testing and treatment experiences at its occurrence. Diagnostic and treatment rapidly changed in the world including Ethiopia. Haramaya University has strived to change its diagnostic capacity using existing facilities in response to the national call to the pandemic.Objective: This summary aims to detail experiences of setting up COVID-19 testing in Haramaya University laboratories, Eastern Ethiopia.Methods: Desktop exercise was conducted to understand the start-up and implementations of COVID-19 testing in two Haramaya University laboratories, Hararghe Health Research Partnership and Campylobacter Genomics and Environmental Enteric Dysfunction laboratories. Communication, formats, guidelines, and standards were reviewed and summarized. Discussion with those involved in the start-up and implementation of the testing were also held. Ideas were summarized to learn the experiences the COVID-19 testing exercises.Lesson Learned: This is a huge experience for Haramaya University to participate in the national call to increase the testing platform in the management of COVID19. Close work relationship with the public health authorities at all levels demonstrated the university's commitment to public service. The university has used the opportunity to advance its molecular testing capability by training its staff and students. The University has also contributed to the capacity development for laboratories in the surrounding areas of Harar, Somali, Oromia, and Dire Dawa. The pandemic has been an opportunity in harnessing existing resource for the benefit of the public during such times of dire needs to provide critical public health laboratory interventions.
Background: Mortality rates for children under five years of age, and stillbirth risks, remain high in parts of sub-Saharan Africa and South Asia. The Child Health and Mortality Prevention Surveillance (CHAMPS) network aims to ascertain causes of child death in high child mortality settings (>50 deaths/1000 live-births). We aimed to develop a “greenfield” site for CHAMPS, based in Harar and Kersa, in Eastern Ethiopia. This very high mortality setting (>100 deaths/1000 live-births in Kersa) had limited previous surveillance capacity, weak infrastructure and political instability. Here we describe site development, from conception in 2015 to the end of the first year of recruitment. Methods: We formed a collaboration between Haramaya University and the London School of Hygiene & Tropical Medicine and engaged community, national and international partners to support a new CHAMPS programme. We developed laboratory infrastructure and recruited and trained staff. We established project specific procedures to implement CHAMPS network protocols including; death notifications, clinical and demographic data collection, post-mortem minimally invasive tissue sampling, microbiology and pathology testing, and verbal autopsy. We convened an expert local panel to determine cause-of-death. In partnership with the Ethiopian Public Health Institute we developed strategies to improve child and maternal health. Results: Despite considerable challenge, with financial support, personal commitment, and effective partnership, we successfully initiated CHAMPS. One year into recruitment (February 2020), we had received 1173 unique death notifications, investigated 59/99 MITS-eligible cases within the demographic surveillance site, and assigned an underlying and immediate cause of death to 53 children. Conclusions: The most valuable data for global health policy are from high-mortality settings, but initiating CHAMPS has required considerable resource. To further leverage this investment, we need strong, sustained, local research leadership, and to broaden the scientific remit. To support this, we have set up a new collaboration, the “Hararghe Health Research Partnership”.
BackgroundRapid antigen tests can help in the effective isolation of symptomatic cases and the systematic tracing of close contacts. However, their reliability must be validated before implementing them widely.MethodsA cross-sectional study was conducted on 236 COVID-19-suspected patients visiting four different health institutions in Harari Regional State, Harar, Eastern Ethiopia, from June to July 2021. Two nasopharyngeal samples were collected and processed by the Panbio™ Ag-RDT kit and qRT-PCR. The collected data were analyzed using SPSS version 25.0.ResultsThe Panbio tests had a sensitivity of 77.5% (95% CI: 61.6–89.2%) and a specificity of 98.5% (95% CI: 95.6–99.7%). It also had a positive predictive value of 91.2% (95% CI: 76.9–96.9%), a negative predictive value of 95.5% (95% CI: 92.3–97.4%), and a kappa of 0.81 (95% CI: 0.7–0.9). The test had a sensitivity of 94.4%, 100%, 100%, and 90% in the samples collected from patients within the 1–5 days post-onset of COVID-19 signs and symptoms, of age group ≤18 years old, with cycle threshold values of <20, and with household contact, respectively.ConclusionThis test can be used as point-of-care testing for the diagnosis of symptomatic patients with short clinical courses and contact with patients in households.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.