Inclement weather and environmental factors impact traffic operations resulting in travel delays and a reduction in travel time reliability. Precipitation is an example of an environmental factor that affects travel conditions, including traffic speed. While Intelligent Transportation Systems services aim to proactively mitigate congestion on roadways, these services are often not sensitive to weather conditions. This paper investigates the application of high-resolution weather data in improving the performance of proactive transportation management models and proposes short-term speed prediction models that fuse real-time high-resolution weather surveillance radar data with traffic stream data to conduct spatial and temporal prediction of the speed of roadway segments. Extreme gradient boosting weather-aware speed prediction models were developed for a 7-km segment of Interstate 270 in St. Louis, MO, USA. The performance of the weather-aware models was compared with the performance of weather-insensitive speed prediction models that did not take precipitation into account. The results indicated that in the majority of instances, the weather-aware models outperformed the weather-insensitive models. The extreme gradient boosting models were compared with the K-nearest neighbors algorithm and feed-forward neural network models. The extreme gradient boosting model consistently outperformed the other two methods. In addition to speed prediction models, van Aerde speed-flow traffic stream models were developed for rain and no-rain conditions to study the impact of precipitation on the traffic stream across the corridor. Results indicated that the impact of precipitation is not identical across the corridor, which was mirrored in the results obtained from weather-aware speed prediction models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.