"Printing" robots and other complex devices through a process of origami-like folding is an emerging and promising manufacturing method due to the inherent simplicity and low cost of folding-based assembly. Folding is used in this class of device to create both complex static structures and flexure-based compliant mechanisms. Dependency on batteries to power these folds with no external wires is a hurdle to giving small-scale folding robots and devices functionality. We demonstrate a battery-free wireless folding method for dynamic multijoint structures, achieving addressable folding motions-both individual and collective folding-using only basic passive electronic components on the device. The method is based on electromagnetic power transmission and resonance selectivity for actuation of resistive shape memory alloy actuators without the need for physical connection or line of sight. We demonstrate the utility of this approach using two folded devices at different sizes using different circuit approaches.
Magnetic resonance imaging (MRI) system–driven medical robotics is an emerging field that aims to use clinical MRI systems not only for medical imaging but also for actuation, localization, and control of medical robots. Submillimeter scale resolution of MR images for soft tissues combined with the electromagnetic gradient coil–based magnetic actuation available inside MR scanners can enable theranostic applications of medical robots for precise image‐guided minimally invasive interventions. MRI‐driven robotics typically does not introduce new MRI instrumentation for actuation but instead focuses on converting already available instrumentation for robotic purposes. To use the advantages of this technology, various medical devices such as untethered mobile magnetic robots and tethered active catheters have been designed to be powered magnetically inside MRI systems. Herein, the state‐of‐the‐art progress, challenges, and future directions of MRI‐driven medical robotic systems are reviewed.
Soft robots have attracted attention for biomedical and consumer devices. However, most of these robots are pneumatically actuated, requiring a tether and thus limiting wearable applications that require multiple controlled actuators. By pairing liquid‐vapor phase change actuation with a textile‐based laminated manufacturing method, smart thermally actuating textiles (STATs) eliminate the need for a pneumatic tether. STATs are lightweight and unobtrusive for wearable applications and exploit a facile manufacturing approach that supports arbitrary customization of the form factor and easy creation of connected arrays of individual robotic modules. Through integrated sensing and heating elements, STATs demonstrate closed‐loop feedback that enables dynamic pressure control in the presence of environmental temperature fluctuations.
Soft actuators and robots, which depart from classical paradigms in rigid robot construction, increase the safety of robot–human and robot–environment interactions, bring superior adaptation capabilities, and extend the range of robotic operations to fragile and sensitive objects and environments. Pneumatic soft actuators are a key building block for soft robotics due to their inherent simplicity, high forces, and large strokes. However, pressure lines connected to large pumps, regulators, and valves put significant mobility limitations on these actuators. Recently, it has been demonstrated that by using phase changes of liquids, pumps can be eliminated in favor of on‐board pressure generation. Here, it is shown that power and control of soft actuators can be realized through phase change of liquids stimulated by inductor‐capacitor resonant receivers placed in an external magnetic field. The method requires no pumps, no external fluidic or electrical wiring, and no batteries on‐board, leading to the possibility of small and low profile wireless soft actuators and robots which can operate for long durations. The phase change enables ultrahigh forces and high strokes with a small volume of active material. An ultralow profile, strong and soft pneumatic bellows‐style actuator powered and controlled wirelessly demonstrates the potential of this technique.
Abstract-In this paper, it is demonstrated how anisotropic and inhomogeneous magnetic metamaterials may be used for molding the flow of the magnetic field, considering magnetic field shielding as the main application of practical interest. It is shown that using anisotropic materials, magnetic field shielding may be improved, and this anisotropy can be realized by metamaterials. Introducing additional inhomogeneity in the metamaterial can increase the shielding performance even more. The required parameters for inhomogeneity may be obtained by representing the shielding problem in matrix form, using a quasi-static magnetic field approximation. Finally, some comments on the practical implementation of the metamaterial and comparisons with the standard shielding techniques are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.