Large-eddy simulations have been conducted for two-phase flow (water and air) in a hydrocyclone using Two-Fluid (Euler–Euler) and Volume-of-Fluid (VOF) models. Subgrid stresses are modeled using a dynamic eddy–viscosity model, and results are compared to those using the Smagorinsky model. The effects of grid resolutions on the mean flow and turbulence statistics have been thoroughly investigated. Five block-structured grids of 0.72, 1.47, 2.4, 3.81, and 7.38 million elements have been used for the simulations of Hsieh’s 75 mm hydrocyclone Mean velocity profiles and normal Reynolds stresses have been compared with experimental data. Results of the two-fluid model are in good agreement with those of the VOF model. A fine mesh in the axial and radial directions is necessary for capturing the turbulent vortical structure. Turbulence structures in the hydrocyclone are dominated by helical vortices around the air core. Energy spectra are analyzed at different points in the hydrocyclone, and regions of low turbulent kinetic energy are identified and attributed to stabilizing effects of the swirling velocity component.
The two-fluid (Euler–Euler) model and large-eddy simulation are used to compute the turbulent two-phase flow of air and water in a cyclonic flotation device known as an Air-Sparged Hydrocyclone (ASH). In the operation of ASH, air is injected through a porous cylindrical wall. The study considers a 48 mm diameter hydrocyclone and uses a block-structured fine mesh of 10.5 million hexagonal elements. The air-to-water injection ratio is 4, and a uniform air bubble diameter of 0.5 mm is specified. The flow field in ASH was investigated for the inlet flow rate of water of 30.6 L/min at different values of underflow exit pressure. The current simulations quantify the effects of the underflow exit pressure on the split ratio and the overall flow physics in ASH, including the distribution of the air volume fraction, water axial velocity, tangential velocity, and swirling-layer thickness. The loci of zero-axial velocity surfaces were determined for different exit pressures. The water split ratio through the overflow opening varies with underflow exit pressure as 6%, 8%, 16%, and 26% for 3, 4, 5, and 6 kPa, respectively. These results indicate that regulating the pressure at the underflow exit can be used to optimize the ASH’s performance. Turbulent energy spectra in different regions of the hydrocyclone were analyzed. Small-scale turbulence spectra at near-wall points exhibit f−4 law, where f is frequency. Whereas for points at the air-column interface, the energy spectra show an inertial subrange f−5/3 followed by a dissipative range of f−7 law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.