The major objective of this study was to test curcumin as a potential radioprotectant for the ileum goblet cells of the rat. Wistar albino rats were used in the study. Group A was the control group and group B was the single dose radiation group. Group C was the two dose radiation group (4 days interval). The rats in groups D and E were given a daily dose of 100 mg/kg of curcumin for 14 and 18 days, respectively. During the curcumin administration period, the rats in group D were exposed to abdominal area gamma ( )-ray dose of 5 Gy on the 10th day and group E was exposed to same dose radiation on the 10th and 14th day. Irradiation and treatment groups were decapitated on the 4th day after exposure to single or two-dose irradiation and ileum tissues were removed for light and electron microscopic investigation. Single or two dose 5 Gy -irradiation caused a marked intestinal mucosal injury in rats on the 4th day. Radiation produced increases in the number of goblet cells. Curcumin appears to have protective eVects against radiation-induced damage, suggesting that clinical transfer is feasible.
The present study, we hypothesized that L-carnitine can minimize germ-cell depletion and morphological features of late cell damage in the rat testis following gamma (gamma)-irradiation. Wistar albino male rats were divided into three groups. Control group received physiological saline 0.2 ml intraperitoneally (i.p.), as placebo. Radiation group received scrotal gamma-irradiation of 10 Gy as a single dose plus physiological saline. Radiation + L-carnitine group received scrotal gamma-irradiation plus 200 mg/kg i.p. L-carnitine. L-carnitine starting 1 day before irradiation and 21 days (three times per week) after irradiation. Testis samples of the all groups were taken at day 21, 44 and 70 post-irradiation. All samples were processed at the light and electron microscopic levels. Morphologically, examination of gamma-irradiated testis revealed presence of marked disorganization and depletion of germ cells, arrest of spermatogenesis, formation of multinucleated giant cells, and vacuolization in the germinal epithelium. The type and extent of these changes varied at different post-treatment intervals. The damage was evident at the 21st day and reached maximum level by the 44th day. By day 44 post-irradiation, the changes were most advanced, and were associated with atrophied seminiferous tubules without germ cells, the increase in the number and size of vacuolizations in germinal epithelium, and the absent multinucleated giant cells due to spermatids had completely disappeared. The increase in nucleus invaginations, the dilatation of smooth endoplasmic reticulum cysternas and the increase in the number and size of lipid droplets in the Sertoli cells were determined at the electron microscopic level. In conclusion, L-carnitine supplementation during the radiotherapy would be effective in protecting against radiation-induced damages in rat testis, and thereby may improve the quality of patient's life after the therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.