In the Southern Great Plains, wheat cultivars have been selected for a combination of outstanding yield and drought tolerance as a long-term breeding goal. To understand the underlying genetic mechanisms, this study aimed to dissect the quantitative trait loci (QTL) associated with yield components and kernel traits in two wheat cultivars `TAM 112' and `Duster' under both irrigated and dryland environments. A set of 182 recombined inbred lines (RIL) derived from the cross of TAM 112/Duster were planted in 13 diverse environments for evaluation of 18 yield and kernel related traits. High-density genetic linkage map was constructed using 5,081 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS). QTL mapping analysis detected 134 QTL regions on all 21 wheat chromosomes, including 30 pleiotropic QTL regions and 21 consistent QTL regions, with 10 QTL regions in common. Three major pleiotropic QTL on the short arms of chromosomes 2B (57.5 - 61.6 Mbps), 2D (37.1 - 38.7 Mbps), and 7D (66.0 - 69.2 Mbps) colocalized with genes Ppd-B1, Ppd-D1, and FT-D1, respectively. And four consistent QTL associated with kernel length (KLEN), thousand kernel weight (TKW), plot grain yield (YLD), and kernel spike-1 (KPS) (Qklen.tamu.1A.325, Qtkw.tamu.2B.137, Qyld.tamu.2D.3, and Qkps.tamu.6A.113) explained more than 5% of the phenotypic variation. QTL Qklen.tamu.1A.325 is a novel QTL with consistent effects under all tested environments. Marker haplotype analysis indicated the QTL combinations significantly increased yield and kernel traits. QTL and the linked markers identified in this study will facilitate future marker-assisted selection (MAS) for pyramiding the favorable alleles and QTL map-based cloning.
Genetic dissection of complex traits by quantitative trait locus (QTL) analysis permits the understanding of the genotypic effects of QTL, interactions between QTLs, and QTL-by-environment interactions in wheat. This study aimed to identify the QTL linked to yield, its components, end-use quality traits including kernel, flour, and dough rheology, and related agronomic traits under dryland and irrigated conditions. A mapping population of 179 F2:6 recombinant inbred lines (RILs) derived from ‘TAM 111’/‘TX05A001822’ was evaluated for these traits to investigate their genetic stability and phenotypic plasticity using 2658 single nucleotide polymorphisms (SNPs) with 35 linkage groups. Traits associated with chromosome regions were detected for individual and across-environment QTL by inclusive composite interval mapping. A total of 30 QTL regions were identified, including 14 consistent QTLs mapped on 11 chromosomes and six pleiotropic QTLs mapped on 5 chromosomes. Three consistent QTLs in chromosomes 1A, 3B, and 6D might be novel. Three major QTLs with both consistent and pleiotropic effects were co-localized with known genes. The first QTL for dough mixing properties was physically clustered around Glu-D1 and had an phenotypic variation explained (PVE) up to 31.3%. The second QTL for kernel-related traits was physically close to the TaCWI-4A (cell wall invertase) gene, which influences the thousand kernel weight, heading date, and harvest index, with a PVE of up to 12.3%. The third QTL, which was colocalized with the TaCWI-5D gene for kernel traits, was identified with a PVE of 6.7%. Epistasis was also detected, but major QTLs were not involved in significant epistasis or interactions with environmental effects. The current study provided new information that is useful for enhanced wheat breeding, which will benefit from the deployment of the favorable alleles for end-use quality, yield, and other agronomic traits in wheat-breeding programs through marker-assisted selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.