Recently, functional network connectivity (FNC, defined as the temporal correlation among spatially distant brain networks) has been used to examine the functional organization of brain networks in various psychiatric illnesses. Dynamic FNC is a recent extension of the conventional FNC analysis that takes into account FNC changes over short periods of time. While such dynamic FNC measures may be more informative about various aspects of connectivity, there has been no detailed head-to-head comparison of the ability of static and dynamic FNC to perform classification in complex mental illnesses. This paper proposes a framework for automatic classification of schizophrenia, bipolar and healthy subjects based on their static and dynamic FNC features. Also, we compare cross-validated classification performance between static and dynamic FNC. Results show that the dynamic FNC significantly outperforms the static FNC in terms of predictive accuracy, indicating that features from dynamic FNC have distinct advantages over static FNC for classification purposes. Moreover, combining static and dynamic FNC features does not significantly improve the classification performance over the dynamic FNC features alone, suggesting that static FNC does not add any significant information when combined with dynamic FNC for classification purposes. A three-way classification methodology based on static and dynamic FNC features discriminates individual subjects into appropriate diagnostic groups with high accuracy. Our proposed classification framework is potentially applicable to additional mental disorders.
Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia which may underscore the abnormal brain performance in this mental illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.