Two-dimensional (2D) semiconductors, such as transition-metal dichalcogenide monolayers (TMD 1Ls), have attracted increasing attention owing to the underlying fundamental physics (e.g., many body effects) and the promising optoelectronic applications such as light-emitting diodes. Though much progress has been made, intrinsic excitonic states of TMD 1Ls are still highly debated in theory, which thirsts for direct experimental determination. Here, we report unconventional emission and excitonic fine structure in 1L WS2 revealed by electrical doping and photoexcitation, which reflects the interplay of exciton, trion, and other excitonic states. Tunable excitonic emission has been realized in a controllable manner via electrical and/or optical injection of charge carriers. Remarkably enough, the superlinear (i.e., quadratic) emission is unambiguously observed which is attributed to biexciton states, indicating the strong Coulomb interactions in such a 2D material. In a nearly neutral 1L WS2, trions and biexcitons possess large binding energies of ∼ 10-15 and 45 meV, respectively. Moreover, our finding of electrically induced robust emission opens up a possibility to boost the luminous efficiency of emerging 1L TMD light emitting diodes.
The aim of valleytronics is to exploit confinement of charge carriers in local valleys of the energy bands of semiconductors as an additional degree of freedom in optoelectronic devices. Thanks to strong direct excitonic transitions in spin-coupled K valleys, monolayer molybdenum disulphide is a rapidly emerging valleytronic material, with high valley polarization in photoluminescence. Here we elucidate the excitonic physics of this material by light helicity-dependent photocurrent studies of phototransistors. We demonstrate that large photocurrent dichroism (up to 60%) can also be achieved in high-quality molybdenum disulphide monolayers grown by chemical vapour deposition, due to the circular photogalvanic effect on resonant excitations. This opens up new opportunities for valleytonic applications in which selective control of spin–valley-coupled photocurrents can be used to implement polarization-sensitive light-detection schemes or integrated spintronic devices, as well as biochemical sensors operating at visible frequencies.
We present evidence of magnetic ordering in type-II (Zn, Mn) Te quantum dots. This ordering is attributed to the formation of bound magnetic polarons caused by the exchange interaction between the strongly localized holes and Mn within the dots. In our photoluminescence studies, the magnetic polarons are detected at temperatures up to ~ 200 K, with a binding energy of ~ 40 meV. In addition, these dots display an unusually small Zeeman shift with applied field (2 meV at 10 T). This behavior is explained by a small and weakly temperature-dependent magnetic susceptibility due to antiferromagnetic coupling of the Mn spins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.