The increasing number of distributed energy resources (DERs), advancing communication and computation technologies, and reliability concerns of the customers have caused an intense interest on the concept of microgrid. Although DERs are the biggest motivation of the microgrids due to their intermittent generation characteristics, they constitute a risk for system reliability. Battery storage systems (BSSs) stand as one of the most effective solutions for this reliability problem. However, inappropriate use of BSS creates other operational problems in power systems. In order to deal with these concerns explicitly in microgrids, an optimized microgrid central controller (MGCC) is the key factor, which controls the realtime operation of a microgrid. This work proposes a model predictive control (MPC) based MGCC that will provide optimal control of the microgrid, considering economic and operational constraints. The proposed system will minimize energy cost of the microgrid by utilizing mixed integer linear programming (MILP) assuming the presence of DERs and BSS as well as the bi-directional grid connection. Moreover, the aging effect of BSS will be considered in the proposed optimization problem which will provide an up-to-date system model. The proposed method is evaluated using real load and photovoltaic (PV) generation data.
Microgrids are composed of distributed energy resources (DERs), storage devices, electric vehicles, flexible loads and so on. They may either operate connected to the main electricity grid (on-grid operation) or separated from the grid (islanded operation). The outputs of the renewable energy sources may fluctuate and thus can cause deviations in the voltage magnitudes especially at islanded mode. This may affect the stability of the microgrids. This paper proposes an optimization model to efficiently manage controllable devices in microgrids aiming to minimize the voltage deviations both in on-grid and islanded operation modes. RSE Distributed Energy Resources Test Facility (DER-TF), which is a low voltage microgrid system in Italy, is used to verify the algorithm. The test system’s data is taken through an online software system (REDIS) and a harmony search based optimization algorithm is applied to control the device parameters. The experimental results show that the harmony search based optimization approach successfully finds the control parameters, and can help the system to obtain a better voltage profile.
The increasing number of distributed energy resources (DERs), advancing communication and computation technologies, and reliability concerns of the customers have caused an intense interest in the concept of microgrid. Although DERs are the biggest motivation of the microgrids due to their intermittent generation characteristics, they constitute a risk for system reliability. Battery storage systems (BSSs) stand as one of the most effective solutions for this reliability problem. However, the inappropriate use of BSS creates other operational problems in power systems. In order to deal with these concerns explicitly in microgrids, an optimized microgrid central controller (MGCC) is the key factor, which controls the realtime operation of a microgrid. This work proposes a model predictive control (MPC) based MGCC that will provide optimal control of the microgrid, considering economic and operational constraints. The proposed system will minimize the energy cost of the microgrid by utilizing mixed-integer linear programming (MILP) assuming the presence of DERs and BSS as well as the bi-directional grid connection. Moreover, the aging effect of BSS will be considered in the proposed optimization problem which will provide an up-to-date system model. The proposed method is evaluated using real load and photovoltaic (PV) generation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.