The advent of Internet-of-Things (IoT) is creating an ecosystem of smart applications and services enabled by a multitude of sensors. The real value of these IoT smart applications comes from analyzing the information provided by these sensors. Information fusion improves information completeness/quality and, hence, enhances estimation about the state of things. Lack of trust and therefore, malicious activities renders the information fusion process and hence, IoT smart applications unreliable. Behavior-related issues associated with the data sources, such as trustworthiness, honesty, and accuracy, must be addressed before fully utilizing these smart applications. In this article, we argue that behavior trust modeling is indispensable to the success of information fusion and, hence, to smart applications. Unfortunately, the area is still in its infancy and needs further research to enhance information fusion. The aim of this article is to raise the awareness and the need of behavior trust modelling and its effect on information fusion. Moreover, this survey describes IoT architectures for modelling trust as well as classification of current IoT trust models. Finally, we discuss future directions towards trustworthy reliable fusion techniques.
Floods, one of the most common natural hazards globally, are challenging to anticipate and estimate accurately. This study aims to demonstrate the predictive ability of four ensemble algorithms for assessing flood risk. Bagging ensemble (BE), logistic model tree (LT), kernel support vector machine (k-SVM), and k-nearest neighbour (KNN) are the four algorithms used in this study for flood zoning in Jeddah City, Saudi Arabia. The 141 flood locations have been identified in the research area based on the interpretation of aerial photos, historical data, Google Earth, and field surveys. For this purpose, 14 continuous factors and different categorical are identified to examine their effect on flooding in the study area. The dependency analysis (DA) was used to analyse the strength of the predictors. The study comprises two different input variables combination (C1 and C2) based on the features sensitivity selection. The under-the-receiver operating characteristic curve (AUC) and root mean square error (RMSE) were utilised to determine the accuracy of a good forecast. The validation findings showed that BE-C1 performed best in terms of precision, accuracy, AUC, and specificity, as well as the lowest error (RMSE). The performance skills of the overall models proved reliable with a range of AUC (89–97%). The study can also be beneficial in flash flood forecasts and warning activity developed by the Jeddah flood disaster in Saudi Arabia.
The Internet of Services (IoS) is gaining ground where cloud environments are utilized to create, subscribe, publish, and share services. The fast and significant evolution of IoS is affecting various aspects in people’s life and is enabling a wide spectrum of services and applications ranging from smart e-health, smart homes, to smart surveillance. Building trusted IoT environments is of great importance to achieve the full benefits of IoS. In addition, building trusted IoT environments mitigates unrecoverable and unexpected damages in order to create reliable, efficient, stable, and flexible smart IoS-driven systems. Therefore, ensuring trust will provide the confidence and belief that IoT devices and consequently IoS behave as expected. Before hosting trust models, suitable architecture for Fog computing is needed to provide scalability, fast data access, simple and efficient intra-communication, load balancing, decentralization, and availability. In this article, we propose scalable and efficient Chord-based horizontal architecture. We also show how trust modeling can be mapped to our proposed architecture. Extensive performance evaluation experiments have been conducted to evaluate the performance and the feasibility and also to verify the behavior of our proposed architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.