Hallmarks of the pathogenesis of autoimmune encephalomyelitis include perivascular infiltration of inflammatory cells into the central nervous system, multifocal demyelination in the brain and spinal cord, and focal neuronal degeneration. Optimal treatment of this complex disease will ultimately call for agents that target the spectrum of underlying pathogenic processes. In the present study, Fn14-TRAIL is introduced as a unique immunotherapeutic fusion protein that is designed to exchange and redirect intercellular signals within inflammatory cell networks, and, in so doing, to impact multiple pathogenic events and yield a net anti-inflammatory effect. In this soluble protein product, a Fn14 receptor component (capable of blocking the pro-inflammatory TWEAK ligand) is fused to a TRAIL ligand (capable of inhibiting activated, pathogenic T cells). Sustained Fn14-TRAIL expression was obtained in vivo using a transposon-based eukaryotic expression vector. Fn14-TRAIL expression effectively prevented chronic, nonremitting, paralytic disease in myelin oligodendrocyte glycoprotein-challenged C57BL/6 mice. Disease suppression in this model was reflected by decreases in the clinical score, disease incidence, nervous tissue inflammation, and Th1, Th2, and Th17 cytokine responses. Significantly, the therapeutic efficacy of Fn14-TRAIL could not be recapitulated simply by administering its component parts (Fn14 and TRAIL) as soluble agents, either alone or in combination. Its functional pleiotropism was manifest in its additional ability to attenuate the enhanced permeability of the blood-brain barrier that typically accompanies autoimmune encephalomyelitis. (Am J Pathol
Intrathecal delivery of gene therapeutics is a route of administration that overcomes several of the limitations that plague current immunosuppressive treatments for autoimmune diseases of the central nervous system (CNS). Here we report intrathecal delivery of small amounts (3 μg) of plasmid DNA that codes for an immunomodulatory fusion protein, OX40-TRAIL, comprised of OX40, a tumor necrosis factor receptor, and tumor necrosis factor related apoptosis inducing ligand (TRAIL). This DNA was delivered in a formulated nucleic acid-lipid complex (lipoplex) with an asymmetric two-chain cationic lipid myristoyl (14:0) and lauroyl (12:1) rosenthal inhibitor–substituted compound (MLRI) formed from the tetraalkylammonium glycerol–based compound N-(1-(2,3-dioleoyloxy)-propyl-N-1-(2-hydroxy)ethyl)-N,N-dimethyl ammonium iodide. Delivery and expression in the CNS of OX40-TRAIL in the mouse prior to onset of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, decreased the severity of clinical disease. We believe this preclinical demonstration of rapid, widespread, and biologically therapeutic nonviral gene delivery to the CNS is important in further development of clinical lipid-based therapeutics for CNS disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.