This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License ÖZ Gümrük işlemlerinde kullanılan beyannamelerin hatasız sunulması kritik önem taşır. Bu beyannamenin oluşturulmasında kullanılan yöntemlerin çeşitliliği, dinamizmi ve karmaşıklığı karşısında insan kaynaklı hatalı beyanname dosyaları üretilmektedir. Bunlar, iş gücü, müşteri ve para kaybı gibi birçok sorunun yanında sözleşme ve yasal uyum gibi hukuki sorunlara da neden olmaktadır. Bu sorunların çözümü için güncel bilgi teknolojileriyle desteklenen akıllı yapılara ihtiyaç duyulmaktadır. Bu amaçla lojistik sektöründe gümrük beyannamesi oluşturma alanında büyük veri üzerinden öğrenme algoritmalarının kullanılabilirliği önemlidir. Bu çalışmada, 4.005.343 beyanname verisi üzerinden gümrük beyannamesi sürecinde öğrenmeye dayalı algoritmaların etkinlik performansları değerlendirilmiştir. Performans ölçüm sonuçlarına göre %25 test oranı ile Train-test split yönteminde Karar Ağacı (%75.69) ve Torbalama (%75.70) algoritmalarında maksimum sonuç ulaşıldı. K değerinin 10 alındığı K-Fold yönteminde ise Karar Ağacı (%75.84) ve Torbalama (%75.83) benzer başarım oranları elde edildi. Bu sonuçlar, makine öğrenmesi algoritmalarının kullanımının bildirim hatalarını tespit etmek için etkili bir yöntem olduğunu ortaya koymuştur. Gümrük beyannamesi süreçlerinin iyileştirilmesine, akıllı kontrol yapılarının geliştirilmesine ve sahada yapılacak yeni çalışmalara kaynak teşkil edecektir.
Makine öğrenimi, derin öğrenme algoritmaları kullanarak insan zekâsını taklit eden bir teknolojidir. Öğrenme algoritmaları yalnızca sayısal veri kümeleri üzerinde çalışır. Kategorik veri kümeleri nitel veya nicel verilerden oluşur. Nitel veri setlerinin öğrenme algoritmalarında kullanılabilmesi için veri setinin sayısallaştırılması gerekmektedir. Sayısallaştırma için etiket kodlama, sıralı kodlama, toplam kodlama, ikili kodlama ve sıcak kodlama gibi birçok kodlama tekniği vardır ancak bu kodlama teknikleri performans, maliyet ve kullanım açısından bazı güçlükler ve yetersizlikleri barındırmaktadır. Diğer taraftan bir kodlama tekniği ile elde edilen eğitim çıktısının orijinalinin bilinmesine ihtiyaç duyulabilmektedir. Bu çalışma, kategorik verilerin sayısallaştırılmasında kodlama tekniklerinin kullanılmasından kaynaklanan yetersizliklere çözüm olabilecek, daha özgün ve daha iyi performansa sahip bir altyapı oluşturma arayışının bir sonucu olarak ortaya çıkmıştır. Geliştirilen yöntem uluslararası bir lojistik firmada 7 farklı kategoride toplam 46 kategorik özellik ve 80.154.139 adet veri üzerinden uygulanmıştır. Testlerin sonucuna göre veri setleri bazında %23.07 ile %300.13 arasında toplamda %153.62 performans kazancı elde edilmiştir. Bu sonuçlar, geliştirilen yöntemin daha başarılı ve uygulanabilir olduğunu göstermektedir. Çalışma, yüksek performans kazancı ve özgün yapısı ile benzer alanlarda kolaylıkla kullanılabilecek bir yapıya sahiptir. Makine öğrenmesinde kodlama tekniklerinin kullanımına alternatif bir çözüm sunmuştur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.