The tremendous growth in the transportation sector as a result of changes in our ways of transport and a rise in the level of prosperity was reflected directly by the intensification of energy needs. Thus, electric vehicles (EV) have been produced to minimise the energy consumption of conventional vehicles. Although the EV motor is more efficient than the internal combustion engine, the well to wheel (WTW) efficiency should be investigated in terms of determining the overall energy efficiency. In simple words, this study will try to answer the basic question – is the electric car really energy efficient compared with ICE-powered vehicles? This study investigates the WTW efficiency of conventional internal combustion engine vehicles ICEVs (gasoline, diesel), compressed natural gas vehicles (CNGV) and EVs. The results show that power plant efficiency has a significant consequence on WTW efficiency. The total WTW efficiency of gasoline ICEV ranges between 11–27 %, diesel ICEV ranges from 25 % to 37 % and CNGV ranges from 12 % to 22 %. The EV fed by a natural gas power plant shows the highest WTW efficiency which ranges from 13 % to 31 %. While the EV supplied by coal-fired and diesel power plants have approximately the same WTW efficiency ranging between 13 % to 27 % and 12 % to 25 %, respectively. If renewable energy is used, the losses will drop significantly and the overall efficiency for electric cars will be around 40–70% depending on the source and the location of the renewable energy systems.
A numerical solution of the steady boundary layer equations under similarity assumptions is obtained for the three-dimensional flow of a micropolar fluid over a continuous stretching surface. The case when microrotation vector is zero on the solid surface is considered. Using properly similarity variables, the three-dimensional Navier -Stokes equations are reduced to a set of four coupled non-linear ordinary differential equations. A very efficient numerical solution has been used to solve the boundary layer equations and a comparison is made with earlier results for a Newtonian fluid.
Air conditioning is becoming increasingly important in the energy supply of buildings worldwide. There has been a dramatic increase in energy requirements for cooling buildings in the Middle East and North Africa (MENA) region. This is before taking the effects of climate change into account, which will also entail a sharp increase in cooling requirements. This paper presents the potential of using a solar thermal absorption cooling system in Sub-Mediterranean Climate. Four sites in Jordan are now equipped with water-lithium bromide (H₂O-LiBr) absorption chillers with a total nominal capacity of 530 kW. The focus of the paper was on the pilot system at the German Jordanian University (GJU) campus with a cooling capacity of 160 kW. The system was designed and integrated in order to support two existing conventional compression chillers with a nominal cooling capacity of 700 kW. The system was economically evaluated based on the observed cooling capacity results with a Coefficient of Performance (COP) equals 0.32, and compared with the values observed for a COP of 0.79 which is claimed by the manufacturer. Several techniques were implemented to evaluate the overall economic viability in-depth such as present worth value, internal rate of return, payback period, and levelized cost of electricity. The aforementioned economic studies showed that the absorption cooling system is deemed not feasible for the observed COP of 0.32 over a lifespan of 25 years. The net present value was equal to −137,684 JD and a payback period of 44 years which exceeds the expected lifespan of the project. Even for an optimal operation of COP = 0.79, the discounted payback period was equal to 23 years and the Levelized Cost of Electricity (LCOE) was equal to 0.65 JD/kWh. The survey shows that there are several weaknesses for applying solar thermal cooling in developing countries such as the high cost of these systems and, more significantly, the lack of experience for such systems.
Securing energy supply and diversifying the energy sources is one of the main goals of energy strategy for most countries. Due to climate change, wind energy is becoming increasingly important as a method of CO2-free energy generation. In this paper, a wind farm with five turbines located in Jerash, a city in northern Jordan, has been designed and analyzed. Optimization of wind farms is an important factor in the design stage to minimize the cost of wind energy to become more competitive and economically attractive. The analyses have been carried out using the WindFarm software to examine the significance of wind turbines’ layouts (M, straight and arch shapes) and spacing on the final energy yield. In this research, arranging the turbines facing the main wind direction with five times rotor diameter distance between each turbine has been simulated, and has resulted in 22.75, 22.87 and 21.997 GWh/year for the M shape, Straight line and Arch shape, respectively. Whereas, reducing the distance between turbines to 2.5 times of the rotor diameter (D) resulted in a reduction of the wind farm energy yield to 22.68, 21.498 and 21.5463 GWh/year for the M shape, Straight line and Arch shape, respectively. The energetic efficiency gain for the optimized wind turbines compared to the modeled layouts regarding the distances between the wind turbines. The energetic efficiency gain has been in the range between 8.9% for 5D (rotor diameter) straight layout to 15.9% for 2.5D straight layout.
Any building’s design should sustain thermal comfort for occupants and promote less energy usage during its lifetime using accurate building retrofits to convert existing buildings into low-energy buildings so that the heating and cooling loads can be minimized. Regarding the methodology adopted in this research, an energy model of an educational building located at the German Jordanian University in Jordan was constructed utilizing DesignBuilder computer software. In addition, it was calibrated utilizing real energy consumption data for a 12-month simulation of energy performance. Subsequently, a computerized evaluation of the roles of building envelope retrofits or the adaptive thermal comfort limits in the reduction of the overall building energy consumption was analyzed. The results of the study show that the current building’s external wall insulation, roof insulation, glazing, windows, and external shading devices are relatively energy-efficient but with high cost, resulting in significant financial losses, even though they achieved noticeable energy savings. For instance, equipping the building’s ventilation system with an economizer culminated in the highest financial profit, contributing to an annual energy savings of 155 MWh. On the other hand, in an occupant-centered approach, applying the adaptive thermal comfort model in wider ranges by adding 1 °C, 2 °C, and 3 °C to the existing operating temperatures would save a significant amount of energy with the least cost (while maintaining indoor thermal comfort), taking over any retrofit option. Using different adaptive thermal comfort scenarios (1 °C, 2 °C, and 3 °C) led to significant savings of around 5%, 12%, and 21%, respectively. However, using different retrofits techniques proved to be costly, with minimum energy savings compared to the adaptive approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.