Light electric vehicles are alternative solutions to passenger cars in terms their lower costs and space saving in city traffic. Narrow tilting vehicles (NTV), known also as three–wheeled vehicles, can be equipped with an active tilting stability controller that tilts the vehicle automatically during cornering to enable lateral stability. There are mainly direct tilt control (DTC), steering tilt control (STC), and combined DTC–STC methods described in the literature. The DTC method is typically applied up to 10 km/h vehicle speeds. Considering city traffic and frequent start–stop cycles, the DTC method needs to be improved in terms of lower actuator torque and energy consumption. DTC can be designed by using either hydraulic or servo motor actuators. In state of the art, the servo motor actuator has not been studied in detail considering its integration and application aspects. Mostly, the actuator has been considered as a black box model. Proposed control method in this study enables improvements in the direct tilt control system (DTC) in terms of reducing the actuator peak torque and enables the application of DTC at higher vehicle speeds. Regarding the modeling of the electric actuator, a permanent magnet synchronous motor and field-oriented control model are also included in the simulation model. Modelling of the electric actuator enables accurate representation of actuator dynamics. In this way, battery Ah capacity can be sized and energy consumption of the electric actuator can be calculated for a given drive cycle. To this end, objective of this study is to design a direct tilt control method including the electrical drives and motion control concepts. In this way, an application methodology of the servo motor actuator is developed and implemented on a narrow tilting three-wheeled electric vehicle. Interactions between tilt control system and the servo motor actuator system are described from practical aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.