Catalytic palladium (Pd) nanoparticles on electrospun copolymers of acrylonitrile and acrylic acid (PAN-AA) mats were produced via reduction of PdCl2 with hydrazine. Fiber mats were electrospun from homogeneous solutions of PAN-AA and PdCl2 in dimethylformamide (DMF). Pd cations were reduced to Pd metals when fiber mats were treated in an aqueous hydrazine solution at room temperature. Pd atoms nucleate and form small crystallites whose sizes were estimated from the peak broadening of X-ray diffraction peaks. Two to four crystallites adhere together and form agglomerates. Agglomerate sizes and fiber diameters were determined by scanning and transmission electron microscopy. Spherical Pd nanoparticles were dispersed homogeneously on the electrospun nanofibers. The effects of copolymer composition and amount of PdCl 2 on particle size were investigated. Pd particle size mainly depends on the amount of acrylic acid functional groups and PdCl2 concentration in the spinning solution. Increasing acrylic acid concentration on polymer chains leads to larger Pd nanoparticles. In addition, Pd particle size becomes larger with increasing PdCl 2 concentration in the spinning solution. Hence, it is possible to tune the number density and the size of metal nanoparticles. The catalytic activity of the Pd nanoparticles in electrospun mats was determined by selective hydrogenation of dehydrolinalool (3,7-dimethyloct-6-ene-1-yne-3-ol, DHL) in toluene at 90°C. Electrospun fibers with Pd particles have 4.5 times higher catalytic activity than the current Pd/Al 2O3 catalyst.
Composites that show visible light transmittance, UV absorption, and moderately high refractive index, based on poly(methyl methacrylate) (PMMA) and zinc oxide (zincite, ZnO) nanoparticles, were prepared in two steps. First, surface-modified ZnO nanoparticles with 22 nm average diameter were nucleated by controlled precipitation via acid-catalyzed esterification of zinc acetate dihydrate with pentan-1-ol. The surface of growing crystalline particles was modified with tert-butylphosphonic acid (tBuPO 3 H 2 ) in situ by monolayer coverage. Particle size and graft density of -PO 3 H 2 on the particle surface were controlled by the amount of surfactant applied to the reaction solution. Second, the surface-modified particles were incorporated into PMMA by in-situ bulk polymerization. Free radical polymerization was carried out in the presence of these particles using AIBN as initiator. Volume fraction (φ) of the particles was varied from 0.10 to 7.76% (0.5 to 30 wt %). Although the particles are homogeneously dispersed in monomer, segregation of the individual particles upon polymerization was observed. Optical constants of the films ca. 2.0 µm including absorption and scattering efficiencies, indices of refraction, and dispersion constants were determined. The absorption coefficient at 350 nm increases linearly with ZnO, obeying Beer's law at low particle contents. However, it levels off toward a value of about 5000 cm -1 and shows a negative deviation at high concentrations because of aggregation of the individual particles. Waveguide propagation loss coefficients of the composite films were examined by prism coupling. A steep increase of the loss coefficient was found with a slope of 52 dB cm -1 vol % -1 as the volume fraction of the particle increases. The refractive index of the composites depends linearly on volume fraction of ZnO and varies from 1.487 to 1.507 (φ ) 7.76%) at 633 nm. The dispersion of refractive index was found to be consistent with Cauchy's formula. IntroductionThe development of polymer-based composites which exhibit various optical functionalities such as high/low refractive index, tailored absorption/emission properties, or strong optical nonlinearities attracts great interest because of the potential optoelectronic applications. 1,2 More specifically, it was pointed out that such composite materials could be applied as transparent substrate or flexible functional layers of optoelectronic devices which require high transparency in the visible range of the optical spectrum. 3 Replacing the conventional substrates made up of inorganic glasses by polymer-based materials could provide a number of advantages, as the polymer composites have milder processing conditions and better impact resistance, can be made flexible, and the optical parameters can be tailored. These composites are typically obtained by the incorporation of functional inorganic particles into a transparent polymer matrix. 3 While the polymeric component provides processability, flexibility, and transparency, the inorg...
Summary: Dispersing surface‐modified zinc oxide nanoparticles (ZnO) in methyl methacrylate (MMA) improves the free radical bulk polymerization process as well as the thermal stability of the formed polymer. Hydroxy groups available on the ZnO surface may induce a degenerative transfer. This suppresses the gel effect, which leads to a better control of the heat evolution during the late stages of polymerization. The formation of chains having vinylidene end groups and head‐to‐head links is suppressed, which shifts the onset of thermal decomposition to the regime where decomposition occurs by random chain scission.Thermal degradation profiles of PMMA and its composite with ZnO at 11 wt.‐%.magnified imageThermal degradation profiles of PMMA and its composite with ZnO at 11 wt.‐%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.