Amidst the global challenges posed by pollution, escalating energy expenses, and the imminent threat of global warming, the pursuit of sustainable energy solutions has become increasingly imperative. Thermoelectricity, a promising form of green energy, can harness waste heat and directly convert it into electricity. This technology has captivated attention for centuries due to its environmentally friendly characteristics, mechanical stability, versatility in size and substrate, and absence of moving components. Its applications span diverse domains, encompassing heat recovery, cooling, sensing, and operating at low and high temperatures. However, developing thermoelectric materials with high-performance efficiency faces obstacles such as high cost, toxicity, and reliance on rare-earth elements. To address these challenges, this comprehensive review encompasses pivotal aspects of thermoelectricity, including its historical context, fundamental operating principles, cutting-edge materials, and innovative strategies. In particular, the potential of one-dimensional nanostructuring is explored as a promising avenue for advancing thermoelectric technology. The concept of one-dimensional nanostructuring is extensively examined, encompassing various configurations and their impact on the thermoelectric properties of materials. The profound influence of one-dimensional nanostructuring on thermoelectric parameters is also thoroughly discussed. The review also provides a comprehensive overview of large-scale synthesis methods for one-dimensional thermoelectric materials, delving into the measurement of thermoelectric properties specific to such materials. Finally, the review concludes by outlining prospects and identifying potential directions for further advancements in the field.
Securing net-zero targets by employing sustainable materials for the built environment is highly desirable, and this can be achieved by retrofitting existing non-smart windows with thermoelectric (TE) glazing, providing improved thermal performance along with green electricity production. It is reported that TE glazing could produce ~4000 kWh of power per year in a cold climate with a temperature differential of ~22 °C. This feature of TE materials drives their emplacement as an alternative to existing glazing materials and could lead to the identification of optimum solutions for smart window development. However, few attempts have been made to employ TE materials in glazing. Therefore, in this brief review, we discuss, for the first time, the efforts made to employ TE in glazing, identify their drawbacks, and discuss potential solutions. Furthermore, the working principle, suitable materials, and methods for developing TE glazing are discussed. In addition, this article introduces a new research area and provides researchers with detailed instructions on how to build and optimize this system. The maximum efficiency of a thermoelectric material is determined by its thermoelectric figure of merit, which is a well-defined metric to characterize a device operating between the hot-side and cold-side temperatures. TE material’s figure of merit promises new perspectives on the conceivable future energy-positive built environment. The role of TE in tackling the energy crisis is also discussed, since it provides sustainable energy alternatives
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.