The moderate epoch-by-epoch agreement and, in particular, the good agreement in terms of sleep statistics suggest that this technique is promising for long-term sleep monitoring, although more evidence is needed to understand whether it can complement PSG in clinical practice. It also offers an improvement in sleep/wake detection over actigraphy for healthy individuals, although this must be confirmed on a larger, clinical population.
Automatic sleep stage classification with cardiorespiratory signals has attracted increasing attention. In contrast to the traditional manual scoring based on polysomnography, these signals can be measured using advanced unobtrusive techniques that are currently available, promising the application for personal and continuous home sleep monitoring. This paper describes a methodology for classifying wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) light and deep sleep on a 30 s epoch basis. A total of 142 features were extracted from electrocardiogram and thoracic respiratory effort measured with respiratory inductance plethysmography. To improve the quality of these features, subject-specific Z-score normalization and spline smoothing were used to reduce between-subject and within-subject variability. A modified sequential forward selection feature selector procedure was applied, yielding 80 features while preventing the introduction of bias in the estimation of cross-validation performance. PSG data from 48 healthy adults were used to validate our methods. Using a linear discriminant classifier and a ten-fold cross-validation, we achieved a Cohen's kappa coefficient of 0.49 and an accuracy of 69% in the classification of wake, REM, light, and deep sleep. These values increased to kappa = 0.56 and accuracy = 80% when the classification problem was reduced to three classes, wake, REM sleep, and NREM sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.