Deep learning models on the same database have varied accuracy ratings; as such, additional parameters, such as pre-processing, data augmentation and transfer learning, can influence the models’ capacity to obtain higher accuracy. In this paper, a fully automated model is designed using deep learning algorithm to capture images from patients and pre-process, segment and classify the intensity of cancer spread. In the first pre-processing step, pectoral muscles are removed from the input images, which are then downsized. The removal of pectoral muscles after identification may become crucial in classification systems. Finally, the pectoral musclesaredeleted from the picture by using an area expanding segmentation. All mammograms are downsized to reduce processing time. Each stage of the fully automated model uses an optimisation approach to obtain highaccuracy results at respective stages. Simulation is conducted to test the efficacy of the model against state-of-art models, and the proposed fully automated model is thoroughly investigated. For a more accurate comparison, we include the model in our analysis. In a nutshell, this work offers a wealth of information as well as review and discussion of the experimental conditions used by studies on classifying breast cancer images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.