We discuss a non-dynamical theory of gravity in three dimensions which is based on an infinite-dimensional Lie algebra that is closely related to an infinite-dimensional extended AdS algebra. We find an intriguing connection between on the one hand higher-derivative gravity theories that are consistent with the holographic c-theorem and on the other hand truncations of this infinite-dimensional Lie algebra that violate the Lie algebra structure. We show that in three dimensions different truncations reproduce, up to terms that do not contribute to the c-theorem, Chern-Simons-like gravity models describing extended 3D massive gravity theories. Performing the same procedure with similar truncations in dimensions larger than or equal to four reproduces higher derivative gravity models that are known in the literature to be consistent with the c-theorem but do not have an obvious connection to massive gravity like in three dimensions.
We analyze the most general case of third-order Chern-Simons-like theories of massive 3D gravity. Results show the conditions for finding the unitary regions on the parameter space. There exists (n − 1)th order theories on the boundary of a unitary nth order model on parameter space under certain conditions, as the first example recently demonstrated from the bimetric generalization of exotic massive gravity. We investigated the mechanism that causes this type of transition for third-order models. Hamiltonian analysis of the theory also presents that ghost and no-ghost regions can be separated by Chern-Simons theories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.