Rising economic inequality across Asia is threatening poverty reduction and slowing down the fight against gender inequality. Although the region has experienced economic growth, the bottom 70 percent have seen their income share fall while the share for the top 10 percent has increased rapidly. Low wages and a lack of rights at work, particularly for women, are at the heart of this scandal. At the same time, women are subsidizing the economy with a disproportionate responsibility for unpaid care work. Achieving living wages and recognizing, redistributing and reducing unpaid care work could support both economic and gender equality in Asia and should be prioritized by both governments and businesses.
The present study investigated the impact of planting spacing on tomato crop growth, water productivity, and fruit quality under different water regimes. Thus, a field experiment was conducted using a randomized complete block design in a factorial arrangement of treatments. The tomato plants were grown at three planting spacing patterns: 30 cm row-to-row planting spacing, 60 cm row-to-row planting spacing, and 90 cm row-to-row planting spacing, which were marked as (G1), (G2), and (G3), respectively. For each planting spacing pattern, irrigation regimes, namely (I1), (I2), and (I3), were established by setting the soil moisture content to 50%, 100%, and 150% of the reference evapotranspiration. The I3 × G2 combination resulted in the maximum values of plant height (68.2 cm), stem diameter (12.1 mm), and yield (41,269.9 kg/hm2), providing the highest contents of protein (1.93 mg/kg), fat (0.81%), fiber (3.94%), and lycopene (4.00 mg/kg) of the fresh fruit. Conversely, the I1 × G1 led to the minimum values of plant height (37.3 cm), stem diameter (5.65 mm), and yield (7814.7 kg/hm2), providing the lowest contents of protein (1.15 mg/kg), fat (0.50%), fiber (2.39%), and lycopene (2.15 mg/kg) of the fresh fruit. The I1 × G1 had the highest water productivity (25.06 kg/m3) value, while the lowest WP (10.23 kg/m3) value was achieved by I3 × G3. While the I1 × G3 treatment minimized the uniformity coefficient and distribution uniformity, the I3 × G3 treatment maximized their values, indicating more uniform water distribution. Our findings indicate that the I3 × G2 combination can increase tomato productivity, growth, and fruit quality. However, the I1 × G1 performed better in terms of water productivity. The results of this study can positively contribute to improving tomato production systems’ sustainability, productivity, and quality under the increasing problem of climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.