Chemical properties of cold pressed onion, okra, rosehip, safflower and carrot seed oils were evaluated in terms of triglyceride (TG), fatty acid and tocol (tocopherol and tocotrienol) compositions.
Triglyceride composition and fatty acid profiles of pomegranate seed oil were evaluated by newly developed methods in reverse‐phase‐high performance liquid chromatography (RP‐HPLC) and gas chromatography (GC), respectively. Different compositions of the mobile phase (acetone and acetonitrile) and flow rates for the HPLC system were used to obtain better separation for accurate quantitative analysis. Triglycerides with conjugated fatty acids (CLnAs) were eluted in order of the polarity of their geometrical isomers (c, t, c < t, t, c < t, t, t). The dominant triglyceride was found to be PuPuPu (32.99 %) in pomegranate seed oil, followed by PuPuCa and PuCaCa containing punicic acid and catalpic acid with total triglyceridelevels of 27.72 and 10.11 %, respectively. For fatty acid composition analysis, triglyceride fractions were derivatized into their respective methylesters which were injected into gas chromatography‐mass spectrometry (GC‐MS) to identify and gas chromatography‐flame ionization detector (GC‐FID) to quantify the conjugated fatty acids of each fraction of triglycerides. Punicic acid was found to be dominant (76.57 %) followed by catalpic acid (6.47 %) and β‐eleotearic acid (1.45 %). Pomegranate seed contained greater amounts of conjugated linolenic acids. These results showed that the present study provides more information about the composition of the triglyceride and fatty acid profiles of pomegranate seed oil compared to the reported studies. Therefore, the developed methods in this study can be used for the identification of the triglyceride and fatty acid composition for pomegranate seed oils and some such specials edible oils including CLnA isomers.
The main goal of the present study was (i) to determine the formation of degradation products in cottonseed oil (CSO) blends during deep frying process by adsorption and high performance size exclusion chromatography techniques and (ii) to evaluate the impacts of food additives on total polar (TPC) and polymeric compound (PTAG) formation using a chemometric approach. In order to prepare the frying CSO blends; ascorbic palmitate, mixed tocopherols, dimethylpolysiloxane, lecithin and sesame oils were used as additives. To determine the real impacts of additives, a quarter-fraction factorial experimental design with two levels and five factors was used. The changes in TPC and PTAG data were carefully evaluated during 10 h of frying at 170 ± 5°C with normal distribution (ND) graphs and analyzed using a one-way analysis of variance (ANOVA), followed by Tukey's Post-hoc test (a = 0.05). The results indicated that the increasing values for TPC and PTAG during the frying processes for all blends, TPC and PTAG contents reached maximum levels of 16.37 and 6.01 % respectively, which are below the limit values stated by official authorities for the quality assessment of frying oils. The ANOVA test results were in good agreement with ND graphs and data indicated that the impact of mixed tocopherols was significant for TPC formation, meanwhile the impact of lecithin and ascorbic palmitate 9 dimethylpolysiloxane were significant for PTAG formation. Thus, the present study should be considered to be a very useful guide for developing new frying oil formulations based on CSO by using food additives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.