We describe a modification of two-dimensional (2-D) polyacrylamide gel electrophoresis that requires only a single gel to reproducibly detect differences between two protein samples. This was accomplished by fluorescently tagging the two samples with two different dyes, running them on the same 2-D gel, post-run fluorescence imaging of the gel into two images, and superimposing the images. The amine reactive dyes were designed to insure that proteins common to both samples have the same relative mobility regardless of the dye used to tag them. Thus, this technique, called difference gel electrophoresis (DIGE), circumvents the need to compare several 2-D gels. DIGE is reproducible, sensitive, and can detect an exogenous difference between two Drosophila embryo extracts at nanogram levels. Moreover, an inducible protein from E. coli was detected after 15 min of induction and identified using DIGE preparatively.
Abstract. We have isolated Swiss 3T3 subclones that are resistant to the rnitogenic and morphological transforming effects of v-Src as a consequence of aberrant translocation of the oncoprotein under low serum conditions. In chicken embryo and NIH 3T3 fibroblasts under similar conditions, v-Src rapidly translocates from the perinuclear region to the focal adhesions upon activation of the tyrosine kinase, resulting in downstream activation of activator protein-1 and mitogen-activated protein kinase, which are required for the mitogenic and transforming activity of the oncoprotein. Since serum deprivation induces cytoskeletal disorganization in Swiss 3T3, we examined whether regulators of the cytoskeleton play a role in the translocation of v-Src, and also c-Src, in response to biological stimuli. Actin stress fibers and translocation of active v-Src to focal adhesions in quiescent Swiss 3T3 cells were restored by microinjection of activated Rho A and by serum. Double labeling with anti-Src and phalloidin demonstrated that v-Src localized along the reformed actin filaments in a pattern that would be consistent with trafficking in complexes along the stress fibers to focal adhesions. Furthermore, treatment with the actin-disrupting drug cytochalasin D, but not the microtubule-disrupting drug nocodazole, prevented v-Src translocation. In addition to v-Src, we observed that PDGF-induced, Racmediated membrane ruffling was accompanied by translocation of c-Src from the cytoplasm to the plasma membrane, an effect that was also blocked by cytochalasin D. Thus, we conclude that translocation of Src from its site of synthesis to its site of action at the cell membrane requires an intact cytoskeletal network and that the small G proteins of the Rho family may specify the peripheral localization in focal adhesions or along the membrane, mediated by their effects on the cytoskeleton.
Two-dimensional difference gel electrophoresis (2D DIGE) is a modified form of 2D electrophoresis (2DE) that allows one to compare two or three protein samples simultaneously on the same gel. The proteins in each sample are covalently tagged with different color fluorescent dyes that are designed to have no effect on the relative migration of proteins during electrophoresis. Proteins that are common to the samples appear as 'spots' with a fixed ratio of fluorescent signals, whereas proteins that differ between the samples have different fluorescence ratios. With the appropriate imaging system, DIGE is capable of reliably detecting as little as 0.5 fmol of protein, and protein differences down to +/- 15%, over a >10,000-fold protein concentration range. DIGE combined with digital image analysis therefore greatly improves the statistical assessment of proteome variation. Here we describe a protocol for conducting DIGE experiments, which takes 2-3 d to complete.
Ventral furrow formation is a key morphogenetic event during Drosophila gastrulation that leads to the internalization of mesodermal precursors. While genetic analysis has revealed the genes involved in the specification of ventral furrow cells, few of the structural proteins that act as mediators of ventral cell behavior have been identified. A comparative proteomics approach employing difference gel electrophoresis was used to identify more than fifty proteins with altered abundance levels or isoform changes in ventralized versus lateralized embryos. Curiously, the majority of protein differences between these embryos appeared well before gastrulation, only a few protein changes coincided with gastrulation,suggesting that the ventral cells are primed for cell shape change. Three proteasome subunits were found to differ between ventralized and lateralized embryos. RNAi knockdown of these proteasome subunits and time-dependent difference-proteins caused ventral furrow defects, validating the role of these proteins in ventral furrow morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.