In this study, the displacement and blocking force of the tip point of a cantilevered electro-active polymer (EAP) actuator has been controlled for a cell injection process which consists of approaching, interacting and leaving steps. A vision-based system is used to acquire the tip displacement data for identifying a transfer function model of the actuator and its position control. Discrete time Proportional-Integral controllers are used to control the position and blocking force. A Smith Predictor is utilized in the vision-based position control system to compensate for the time delay due to image processing. Experimental position and blocking force results prove that the proposed control strategies are effective enough to guide the actuator to undertake the cell injection process. This study contributes to the previously published work from the point of view of simultaneously controlling the position and blocking force of the electroactive polymer actuators and widening their application areas.
The spectrum of EEG has been studied to predict the depth of anesthesia using variety of signal processing methods up to date. Those standard models have used the full spectrum of EEG signals together with the systolic-diastolic pressure and pulse values. As it is generally agreed today that the brain is in stable state and the delta-theta bands of the EEG spectrum remain active during anesthesia. Considering this background, two questions that motivates this paper. First, determining the amount of gas to be administered is whether feasable from the spectrum of EEG during the maintenance stage of surgical operations. Second, more specifically, the delta-theta bands of the EEG spectrum are whether sufficient alone for this aim. This research aims to answer these two questions together. Discrete wavelet transformation (DWT) and empirical mode decomposition (EMD) were applied to the EEG signals to extract delta-theta bands. The power density spectrum (PSD) values of target bands were presented as inputs to multi-layer perceptron (MLP) neural network (NN), which predicted the gas level. The present study has practical implications in terms of using less data, in an effective way and also saves time as well.
Elektrohidrolik sistemler sağladıkları avantajlar sebebiyle endüstrinin vazgeçilmezi olmuştur. Buna karşın hidrolik sistemlerin doğrusal olmayan karakteristik özellikleri ve çok sayıda parametre belirsizliği barındırması bu sistemlerin denetimini zorlaştıran etmenler olarak öne çıkmaktadır. Bu çalışmada ise oransal valf ile sürülen asimetrik bir hidrolik pistonun konumu pekiştirmeli öğrenme ile denetlenmiştir. Pek çok pekiştirmeli öğrenme algoritması olmasına rağmen sürekli uzayda etkinliği ile öne çıkan derin deterministik politika gradyanı yöntemi tercih edilmiştir. İlgili hiper parametreler öncül çalışmalarla belirlenerek çoklu konum referans sinyali için denetleyicinin eğitimi benzetim ortamında gerçekleştirilmiştir. Elde edilen sonuçları kıyaslamak için aynı çalışma PID denetleyici ile de gerçekleştirilmiştir. Çalışmada kullanılan pekiştirmeli öğrenme yöntemi farklı karakteristiklere sahip konum referans sinyalinin takibinde PID denetleyiciden daha %25.51 oranında daha başarılı sonuçlar ortaya koymuştur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.