To improve the robustness and performance of the dynamic response of a cage asynchronous motor, a direct torque control (DTC) based on sliding mode control (SMC) is adopted to replace traditional proportional-integral (PI) and hysteresis comparators. The combination of the proposed strategy with sinusoidal pulse width modulation (SPWM) applied to a three-level neutral point clamped (NPC) inverter brings many advantages such as a reduction in harmonics, and precise and rapid tracking of the references. Simulations are performed for a three-level inverter with SM-DTC, a two-level inverter with SM-DTC and the three-level inverter with PI-DTC-SPWM. The results show that the SM-DTC method achieves better performance in terms of reference tracking, while adoption of the three-level inverter topology can effectively reduce the ripples. Applying the SM-DTC to the three-level inverter presents the best solution for achieving efficient and robust control. In addition, the use of a sliding mode speed estimator eliminates the mechanical sensor and this increases the reliability of the system.
<p>To highlight the conceptual aspects related to the implementation of techniques optimal control in the form state, we present in this paper, the identification and control of the temperature and humidity of the air inside a greenhouse. Using respectively an online identification based on the recursive least squares with forgotten Factor method and the multivariable adaptive linear quadratic Gaussian approach which the advanced technique (LQG) is presented. The design of this controller parameters is based on state models identified directly from measured greenhouse data. hence the performances of the controller developed are illustrated by different tests and simulations on identified models of a greenhouse. Discussions on the results obtained are then processed in the paper to show the effectiveness of the controller in terms of stability and optimization of the cost of control.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.