Abstract. In this paper large resistor-capacitor (RC) networks that consist of randomly distributed conductive and capacitive elements which are much larger than those previously explored are studied using an efficient algorithm. We investigate the emergent power-law scaling of the conductance and the percolation and saturation limits of the networks at the high and low frequency bounds in order to compare with a modification of the classical Effective Medium Approximation (EMA) that enables its extension to finite network sizes. It is shown that the new formula provides a simple analytical description of the network response that accurately predicts the effects of finite network size and composition and it agrees well with the new numerical calculations on large networks and is a significant improvement on earlier EMA formulae. Avenues for future improvement and explanation of the formula are highlighted. Finally, the statistical variation of network conductivity with network size is observed and explained. This work provides a deeper insight into the response of large resistor-capacitor networks to understand the AC electrical properties, size effects, composition effects and statistical variation of properties of a range of heterogeneous materials and composite systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.