The normalized distance Laplacian matrix of a connected graph $ G $, denoted by $ D^{\mathcal{L}}(G) $, is defined by $ D^{\mathcal{L}}(G)=Tr(G)^{-1/2}D^L(G)Tr(G)^{-1/2}, $ where $ D(G) $ is the distance matrix, the $D^{L}(G)$ is the distance Laplacian matrix and $ Tr(G)$ is the diagonal matrix of vertex transmissions of $ G. $ The set of all eigenvalues of $ D^{\mathcal{L}}(G) $ including their multiplicities is the normalized distance Laplacian spectrum or $ D^{\mathcal{L}} $-spectrum of $G$. In this paper, we find the $ D^{\mathcal{L}} $-spectrum of the joined union of regular graphs in terms of the adjacency spectrum and the spectrum of an auxiliary matrix. As applications, we determine the $ D^{\mathcal{L}} $-spectrum of the graphs associated with algebraic structures. In particular, we find the $ D^{\mathcal{L}} $-spectrum of the power graphs of groups, the $ D^{\mathcal{L}} $-spectrum of the commuting graphs of non-abelian groups and the $ D^{\mathcal{L}} $-spectrum of the zero-divisor graphs of commutative rings. Several open problems are given for further work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.