The time when plant biostimulants were considered as “snake oil” is erstwhile and the skepticism regarding their agricultural benefits has significantly faded, as solid scientific evidences of their positive effects are continuously provided. Currently plant biostimulants are considered as a full-fledged class of agri-inputs and highly attractive business opportunity for major actors of the agroindustry. As the dominant category of the biostimulant segment, seaweed extracts were key in this growing renown. They are widely known as substances with the function of mitigating abiotic stress and enhancing plant productivity. Seaweed extracts are derived from the extraction of several macroalgae species, which depending on the extraction methodology lead to the production of complex mixtures of biologically active compounds. Consequently, plant responses are often inconsistent, and precisely deciphering the involved mechanism of action remains highly intricate. Recently, scientists all over the world have been interested to exploring hidden mechanism of action of these resources through the employment of multidisciplinary and high-throughput approaches, combining plant physiology, molecular biology, agronomy, and multi-omics techniques. The aim of this review is to provide fresh insights into the concept of seaweed extract (SE), through addressing the subject in newfangled standpoints based on current scientific knowledge, and taking into consideration both academic and industrial claims in concomitance with market’s requirements. The crucial extraction process as well as the effect of such products on nutrient uptake and their role in abiotic and biotic stress tolerance are scrutinized with emphasizing the involved mechanisms at the metabolic and genetic level. Additionally, some often overlooked and indirect effects of seaweed extracts, such as their influence on plant microbiome are discussed. Finally, the plausible impact of the recently approved plant biostimulant regulation on seaweed extract industry is addressed.
The pathogenicity of various Streptomyces scabies isolates involved in potato scab disease was correlated with the production of thaxtomin A. Since calcium is known as an essential second messenger associated with pathogen-induced plant responses and cell death, it was investigated whether thaxtomin A could induce a Ca2+ influx related to cell death and to other putative plant responses using Arabidopsis thaliana suspension cells, which is a convenient model to study plant-microbe interactions. A. thaliana cells were treated with micromolar concentrations of thaxtomin A. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements with the apoaequorin Ca2+ reporter protein and by external pH measurement. Involvement of anion and calcium channels in signal transduction leading to programmed cell death was determined by using specific inhibitors. These data suggest that this toxin induces a rapid Ca2+ influx and cell death in A. thaliana cell suspensions. Moreover, these data provide strong evidence that the Ca2+ influx induced by thaxtomin A is necessary to achieve this cell death and is a prerequisite to early thaxtomin A-induced responses: anion current increase, alkalization of the external medium, and the expression of PAL1 coding for a key enzyme of the phenylpropanoid pathway.
Ten antibiotic-producing Streptomyces spp. isolated from Moroccan soils were evaluated for their ability to inhibit in vitro Sclerotium rolfsii development. Four isolates having the greatest pathogen inhibitory capabilities were subsequently tested for their ability to inhibit sclerotial germination in sterile soil. This test was carried out by using biomass inoculum, culture filtrate, and spore suspension of the isolates as treatment. Treatment with biomass inoculum and culture filtrate gave the highest inhibition of sclerotia. Biological control tests against Sclerotium rolfsii damping-off of sugar beet seeds showed that the selected Streptomyces isolates reduced significantly the disease severity, the J-2 isolate being the more potent. In addition, treatment with the isolate J-2 resulted in a significant increase (P £ 0.05) in seedling development compared to the control. All antagonistic Streptomyces selected here were able to grow in the rhizosphere soil from infected sugar beet culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.