In this paper, the focal point is to study the stabilization problem of distributed systems via bilinear boundary control. Hence, we give some sufficient conditions to ensure weak, strong, and exponential stabilization of the considered system. Finally, an example of application is devoted, and the attained results are illustrated through numerical simulations.
This new research aims to extend the topic of the enlarged controllability of a fractional output linear system. Thus, we characterize the optimal control by two methods, ensuring that the Riemann-Liouville fractional derivative of the final state of the considered system lies between two given functions on a subregion of the evolution domain. Firstly, we transform the considered problem into the saddle point using the Lagrangian multiplier approach. Then, in the second one, we provide the technique of the subdifferential, which allows us to present the cost-explicit formula of the minimum energy control. Moreover, we construct an algorithm of Uzawa type to illustrate the theoretical results obtained through numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.