Conventional acoustical methods for measuring the permeability or flow resistivity of a porous material require a priori estimation of the porosity. In this work, an acoustical method is presented in which a simplified expression (independent of both the frequency and porosity) for the transmitted waves at the Darcy's regime (low frequency range) is derived, and used for the inverse determination of both the viscous static permeability (or flow resistivity) and the thickness of air-saturated porous materials. The inverse problem is solved based on the least-square numerical method using experimental transmitted waves in time domain. Tests are performed using industrial plastic foams. Experimental and numerical validation results of this method are presented, which show the advantage of measuring the viscous permeability and thickness of a porous slab, without the required prior knowledge of the porosity, but by simply using the transmitted waves.
An acoustic method based on sound transmission is proposed for deducing the static thermal permeability and the inertial factor of porous materials having a rigid frame at low frequencies. The static thermal permeability of porous material is a geometrical parameter equal to the inverse trapping constant of the solid frame [Lafarge et al., J. Acoust. Soc. Am. 102, 1995 (1997)] and is an important characteristic of the porous material. The inertial factor [Norris., J. Wave Mat. Interact. 1, 365 (1986)] describes the fluid structure interactions in the low frequency range (1-3 kHz). The proposed method is based on a temporal model of the direct and inverse scattering problems for the propagation of transient audible frequency waves in a homogeneous isotropic slab of porous material having a rigid frame. The static thermal permeability and the inertial factor are determined from the solution of the inverse problem. The minimization between experiment and theory is made in the time domain. Tests are performed using industrial plastic foams. Experimental and theoretical data are in good agreement. Furthermore, the prospects are discussed. This method has the advantage of being simple, rapid, and efficient.
An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).
International audienceWe present an improved method for the characterization of air-saturated porous materials by simultaneous measurement of porosity, tortuosity, viscous and thermal characteristic lengths via ultrasonic transmission only. The proposed method is based on a temporal model of the direct and inverse scattering problem for the transient ultrasonic waves in a homogeneous isotropic slab of rigid porous material. The advantage of the proposed method is that the four parameters are determined simultaneously using just transmitted experimental wave from a porous material saturated by one gas (air). In addition, no relationship is assumed between the two characteristic lengths
A direct and inverse method is proposed for measuring the thickness and flow resistivity of a rigid air-saturated porous material using acoustic reflected waves at low frequency. The equivalent fluid model is considered. The interactions between the structure and the fluid are taken by the dynamic tortuosity of the medium introduced by Johnson et al. and the dynamic compressibility of the air introduced by Allard. A simplified expression of the reflection coefficient is obtained at very low frequencies domain (Darcy’s regime). This expression depends only on the thickness and flow resistivity of the porous medium. The simulated reflected signal of the direct problem is obtained by the product of the experimental incident signal and the theoretical reflection coefficient. The inverse problem is solved numerically by minimizing between simulated and experimental reflected signals. The tests are carried out using two samples of polyurethane plastic foam with different thicknesses and resistivity. The inverted values of thickness and flow resistivity are compared with those obtained by conventional methods giving good results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.