Abstract-In recent years, data has become uncertain due to the flourishing advanced technologies that participate continuously and increasingly in producing large amounts of incomplete data. Often, many modern applications where uncertainty occurs are distributed in nature, e.g., distributed sensor networks, information extraction, data integration, social network, etc. Consequently, even though the data uncertainty has been studied in the past for centralized behavior, it is still a challenging issue to manage uncertainty over the data in situ. In this paper, we propose a framework to managing uncertain categorical data over distributed environments that is built upon a hierarchical indexing technique based on inverted index, and a distributed algorithm to efficiently process queries on uncertain data in distributed environment. Leveraging this indexing technique, we address two kinds of queries on the distributed uncertain databases 1) a distributed probabilistic thresholds query, where its answers satisfy the probabilistic threshold requirement; and 2) a distributed top-k-queries, optimizing, the transfer of the tuples from the distributed sources to the coordinator site and the time treatment. Extensive experiments are conducted to verify the effectiveness and efficiency of the proposed method in terms of communication costs and response time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.