Obtaining an accurate simulation of the boundary conditions is very challenging but it is essential in order to represent the true behaviour of the whole structure in fire. In recent years, hybrid simulation has been emerging as an efficient and economical method for simulating realistic boundary conditions in the field of earthquake engineering. This technique can be used to study the load redistribution that may occur in a structural system as a result of locally elevated temperatures. In this paper, the fire-exposed element will be modelled in one analysis (a 3D model) and the rest of the structure in another analysis (a 2D model). This kind of sub-structuring enables the behaviour of the structural system as a whole to be studied. A hybrid simulation (HS) approach is presented and successfully implemented using the OpenFresco and OpenSees software. This approach enables the simulation of the correct restraint provided by the cold structure to the fire affected structural element. The HS analysis of a composite beam is compared with an unrestrained or simply supported version to highlight the difference in behaviour. Finally, the Cardington restrained beam test is modelled to demonstrate the potential of HS technique. Good agreement with the test results highlights that HS approach can be an effective method for studying the behaviour of the whole structural system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.