Motivation Single-cell RNA-seq (scRNA-seq) has been widely used to resolve cellular heterogeneity. After collecting scRNA-seq data, the natural next step is to integrate the accumulated data to achieve a common ontology of cell types and states. Thus, an effective and efficient cell-type identification method is urgently needed. Meanwhile, high quality reference data remain a necessity for precise annotation. However, such tailored reference data are always lacking in practice. To address this, we aggregated multiple datasets into a meta-dataset on which annotation is conducted. Existing supervised or semi-supervised annotation methods suffer from batch effects caused by different sequencing platforms, the effect of which increases in severity with multiple reference datasets. Results Herein, a robust deep learning based single-cell Multiple Reference Annotator (scMRA) is introduced. In scMRA, a knowledge graph is constructed to represent the characteristics of cell types in different datasets, and a graphic convolutional network (GCN) serves as a discriminator based on this graph. scMRA keeps intra-cell-type closeness and the relative position of cell types across datasets. scMRA is remarkably powerful at transferring knowledge from multiple reference datasets, to the unlabeled target domain, thereby gaining an advantage over other state-of-the-art annotation methods in multi-reference data experiments. Furthermore, scMRA can remove batch effects. To the best of our knowledge, this is the first attempt to use multiple insufficient reference datasets to annotate target data, and it is, comparatively, the best annotation method for multiple scRNA-seq datasets. Availability An implementation of scMRA is available from https://github.com/ddb-qiwang/scMRA-torch Supplementary information Supplementary data are available at Bioinformatics online.
Motivation Single-cell multi-omics sequencing techniques have rapidly developed in the past few years. Clustering analysis with single-cell multi-omics data may give us novel perspectives to dissect cellular heterogeneity. However, multi-omics data have the properties of inherited large dimension, high sparsity and existence of doublets. Moreover, representations of different omics from even the same cell follow diverse distributions. Without proper distribution alignment techniques, clustering methods will encounter less separable clusters easily affected by less informative omics data. Results We developed MoClust, a novel joint clustering framework that can be applied to several types of single-cell multi-omics data. A selective automatic doublet detection module that can identify and filter out doublets is introduced in the pretraining stage to improve data quality. Omics-specific autoencoders are introduced to characterize the multi-omics data. A contrastive learning way of distribution alignment is adopted to adaptively fuse omics representations into an omics-invariant representation. This novel way of alignment boosts the compactness and separableness of clusters, while accurately weighting the contribution of each omics to the clustering object. Extensive experiments, over both simulated and real multi-omics datasets, demonstrated the powerful alignment, doublet detection and clustering ability features of MoClust. Availability An implementation of MoClust is available from https://doi.org/10.5281/zenodo.7306504 Supplementary information Supplementary data are available at Bioinformatics online.
Single-cell multiomics sequencing techniques have rapidly developed in the past few years. Among these techniques, single-cell cellular indexing of transcriptomes and epitopes (CITE-seq) allows simultaneous quantification of gene expression and surface proteins. Clustering CITE-seq data have the great potential of providing us with a more comprehensive and in-depth view of cell states and interactions. However, CITE-seq data inherit the properties of scRNA-seq data, being noisy, large-dimensional, and highly sparse. Moreover, representations of RNA and surface protein are sometimes with low correlation and contribute divergently to the clustering object. To overcome these obstacles and find a combined representation well suited for clustering, we proposed scCTClust for multiomics data, especially CITE-seq data, and clustering analysis. Two omics-specific neural networks are introduced to extract cluster information from omics data. A deep canonical correlation method is adopted to find the maximumly correlated representations of two omics. A novel decentralized clustering method is utilized over the linear combination of latent representations of two omics. The fusion weights which can account for contributions of omics to clustering are adaptively updated during training. Extensive experiments over both simulated and real CITE-seq data sets demonstrated the power of scCTClust. We also applied scCTClust on transcriptome–epigenome data to illustrate its potential for generalizing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.