<p class="Abstract"><em>One technology to support production speed is electric motors with high performance, efficiency, dynamic speed and good speed responses. DC motors are one type of electric motor which is used in the industry. Sliding Mode Control (SMC) is the robust non-linear control. The basic theory regarding SMC is presented. The SMC design which is implemented is the speed control of the DC motor is analyzed. The controller is implemented in simulation using MATLAB / Simulink environment. The step response and signal tracking test unit are carried out. The results show that SMC has a better performance compare to PID which is faster settling time and no overshoot and undershoot. </em></p><p class="Abstract"> </p>
PID Optimization by Genetic Algorithm or any intelligent optimization method is widely being used recently. The main issue is to select a suitable objective function based on error criteria. Original error criteria that is widely being used such as ITAE, ISE, ITSE and IAE is insufficient in enhancing some of the performance parameter. Parameter such as settling time, rise time, percentage of overshoot, and steady state error is included in the objective function. Weightage is added into these parameters based on users’ performance requirement. Based on the results, modified error criteria show improvement in all performance parameter after being modified. All of the error criteria produce 0% overshoot, 29.51%-39.44% shorter rise time, 21.11%-42.98% better settling time, 10% to 53.76% reduction in steady state error. The performance of modified objective function in minimizing the error signal is reduced. It can be concluded that modification of objective function by adding performance parameter into consideration could improve the performance of rise time, settling time, overshoot percentage, and steady state error
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.