SummaryBiobanks are being established across the world to understand the genetic, environmental, and epidemiological basis of human diseases with the goal of better prevention and treatments. Genome-wide association studies (GWAS) have been very successful at mapping genomic loci for a wide range of human diseases and traits, but in general, lack appropriate representation of diverse ancestries - with most biobanks and preceding GWAS studies composed of individuals of European ancestries. Here, we introduce the Global Biobank Meta-analysis Initiative (GBMI) -- a collaborative network of 19 biobanks from 4 continents representing more than 2.1 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWAS generated using harmonized genotypes and phenotypes from member biobanks. GBMI brings together results from GWAS analysis across 6 main ancestry groups: approximately 33,000 of African ancestry either from Africa or from admixed-ancestry diaspora (AFR), 18,000 admixed American (AMR), 31,000 Central and South Asian (CSA), 341,000 East Asian (EAS), 1.4 million European (EUR), and 1,600 Middle Eastern (MID) individuals. In this flagship project, we generated GWASs from across 14 exemplar diseases and endpoints, including both common and less prevalent diseases that were previously understudied. Using the genetic association results, we validate that GWASs conducted in biobanks worldwide can be successfully integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics between biobanks. We demonstrate the value of this collaborative effort to improve GWAS power for diseases, increase representation, benefit understudied diseases, and improve risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of the studied traits.
MotivationWe present an overview of the Kappa platform, an integrated suite of analysis and visualization techniques for building and interactively exploring rule-based models. The main components of the platform are the Kappa Simulator, the Kappa Static Analyzer and the Kappa Story Extractor. In addition to these components, we describe the Kappa User Interface, which includes a range of interactive visualization tools for rule-based models needed to make sense of the complexity of biological systems. We argue that, in this approach, modeling is akin to programming and can likewise benefit from an integrated development environment. Our platform is a step in this direction.ResultsWe discuss details about the computation and rendering of static, dynamic, and causal views of a model, which include the contact map (CM), snaphots at different resolutions, the dynamic influence network (DIN) and causal compression. We provide use cases illustrating how these concepts generate insight. Specifically, we show how the CM and snapshots provide information about systems capable of polymerization, such as Wnt signaling. A well-understood model of the KaiABC oscillator, translated into Kappa from the literature, is deployed to demonstrate the DIN and its use in understanding systems dynamics. Finally, we discuss how pathways might be discovered or recovered from a rule-based model by means of causal compression, as exemplified for early events in EGF signaling.Availability and implementationThe Kappa platform is available via the project website at kappalanguage.org. All components of the platform are open source and freely available through the authors’ code repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.