Wind speed forecasting is important for wind energy forecasting. In the modern era, the increase in energy demand can be managed effectively by forecasting the wind speed accurately. The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty, the curse of dimensionality, overfitting and non-linearity issues. The curse of dimensionality and overfitting issues are handled by using Boruta feature selection. The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory (Bi-LSTM). In this paper, Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting. The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection (BFS). Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps. The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron (MLP), MLP with Boruta (BFS-MLP), Long Short Term Memory (LSTM), LSTM with Boruta (BFS-LSTM) and Bi-LSTM in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Square Error (MSE) and R 2 . The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784, MAE of 0.530, MSE of 0.615 and R 2 of 0.8766. The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others.
With the rapidly increasing reliance on advances in IoT, we persist towards pushing technology to new heights. From ordering food online to gene editing-based personalized healthcare, disruptive technologies like ML and AI continue to grow beyond our wildest dreams. Early detection and treatment through AI-assisted diagnostic models have outperformed human intelligence. In many cases, these tools can act upon the structured data containing probable symptoms, offer medication schedules based on the appropriate code related to diagnosis conventions, and predict adverse drug effects, if any, in accordance with medications. Utilizing AI and IoT in healthcare has facilitated innumerable benefits like minimizing cost, reducing hospital-obtained infections, decreasing mortality and morbidity etc. DL algorithms have opened up several frontiers by contributing towards healthcare opportunities through their ability to understand and learn from different levels of demonstration and generalization, which is significant in data analysis and interpretation. In contrast to ML which relies more on structured, labeled data and domain expertise to facilitate feature extractions, DL employs human-like cognitive abilities to extract hidden relationships and patterns from uncategorized data. Through the efficient application of DL techniques on the medical dataset, precise prediction, and classification of infectious/rare diseases, avoiding surgeries that can be preventable, minimization of over-dosage of harmful contrast agents for scans and biopsies can be reduced to a greater extent in future. Our study is focused on deploying ensemble deep learning algorithms and IoT devices to design and develop a diagnostic model that can effectively analyze medical Big Data and diagnose diseases by identifying abnormalities in early stages through medical images provided as input. This AI-assisted diagnostic model based on Ensemble Deep learning aims to be a valuable tool for healthcare systems and patients through its ability to diagnose diseases in the initial stages and present valuable insights to facilitate personalized treatment by aggregating the prediction of each base model and generating a final prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.