COVID-19 pandemic is a serious problem in the world today. The SARS-CoV-2 virus that causes COVID-19 has important proteins used for its infection and development, namely the protease and spike glycoprotein. The RBD (Receptor Binding Domain) of spike glycoprotein (RBD-S) can bind to the ACE2 (Angiotensin Converting Enzyme-2) receptor at the protease domain (PD) (PD-ACE2) of the host cell, thereby leading to a viral infection. This study aims to reveal the potential of compounds contained in Curcuma sp., Citrus sp., Alpinia galanga, and Caesalpinia sappan as anti SARS-CoV-2 through its binding to 3 protein receptors. The study was conducted by molecular docking using the MOE 2010 program (licensed from Faculty of Pharmacy UGM, Indonesia). The selected protein targets are RBD-S (PDB ID:6LXT), PD-ACE2 (PDB ID: 6VW1), and SARS-CoV-2 protease (PDB ID:6LU7). The affinities of bonds formed is represented as a docking score. The results show that hesperidin, one of the compounds in Citrus sp., has the lowest docking score for all three protein receptors representing the highest affinity to bind the receptors. Moreover, all of the citrus flavonoids possess good affinity to the respected receptors as well as curcumin, brazilin, and galangin, indicating that those compounds perform inhibitory potential for the viral infection and replication. In general, the results of this study indicate that Citrus sp. exhibit the best potential as an inhibitor to the development of the SARS-CoV-2, followed by galangal, sappan wood, and Curcuma sp. that can be consumed in daily life as prophylaxis of COVID-19.
Purpose: Pentagamavunon-1 (PGV-1) is a curcumin analogue that shows cytotoxic activity in various cancer cells. In this study, we evaluated the effect of PGV-1 on a highly metastatic breast cancer cell line, the 4T1 cells, as an anti-metastatic and anti-proliferative agent. Methods: Cell viability was evaluated using MTT assay; while cell cycle profile, apoptosis incidence, and ROS intracellular level were determined by flow cytometry. Cell senescence was observed under senescence-associated-β-galactosidase (SA-β-gal) staining assay. The expression of matrixmetalloproteinase-9 (MMP-9) was determined using immunoreaction based-ELISA, while other proteins expression were detected using immunoblotting. Results: Curcumin and PGV-1 showed cytotoxic effects on 4T1 cells with IC50 value of 50 and 4 µM, respectively. The cytotoxic activity of PGV-1 was correlated to the induction of G2/M cell cycle arrest and cell senescence. Furthermore, PGV-1 increased the accumulation of intracellular ROS level. We also revealed that PGV-1 bound to several ROS-metabolizing enzymes, including glyoxalase I (GLO1), peroxiredoxin 1 (PRDX1), N-ribosyldihydronicotinamide: quinone reductase 2 (NQO2), aldo-keto reductase family 1 member c1 (AKR1C1). As an antimetastatic agent, PGV-1 showed less inhibitory effect on cell migration compared to curcumin. However, PGV-1 significantly decreased MMP-9 protein expression in a dose-dependent manner suggesting it still potent to inhibit metastatic cells. Conclusion: Overall, our findings suggest that PGV-1 is potential to be developed as an antiproliferative and anti-metastatic agent.
Abnormal levels of High temperature requirement A1 (HtrA1) protein have been repeatedly observed in sera and placentas of preeclampsia patients. To understand the functions of HtrA1 in placentation and in the etiology of preeclampsia, we established HtrA1(-/-) mice. HtrA1(-/-) mice show intrauterine growth retardation, and their placentas are small due to a reduced size of the junctional zone and aberrant vascularization in the labyrinth at the mid-gestation stage. HtrA1 is expressed by Tpbpa-positive trophoblast precursors in the outer ectoplacental cone and junctional zone from embryonic day 7.5 to 10.5. In the HtrA1(-/-) placenta, Tpbpa-positive cell precursors are decreased in the early stage. Spongiotrophoblasts and glycogen trophoblast cells, both of which differentiate from Tpbpa-positive precursors, are consequently decreased in the junctional zone. Fewer spiral artery-associated trophoblast giant cells, another cell type derived from Tpbpa-positive precursors, invade the decidua and associate with maternal arteries in the HtrA1(-/-) placenta than in the wild type placenta. Maternal arteries in the HtrA1(-/-) decidua have narrower lumens, thicker arterial walls, and more vascular smooth muscle cells remaining in the walls than those in the wild type decidua, indicating impaired remodeling of maternal arteries. These results indicate that HtrA1 plays important roles in the differentiation of trophoblasts from Tpbpa-positive precursors in the ectoplacental cone. Insufficient levels of HtrA1 cause poor placental development and intrauterine growth retardation, due to aberrant trophoblast differentiation and consequent defects in maternal artery remodeling, and may contribute to the onset of preeclampsia.
Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells’ sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein–protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.