One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input–output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input–output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.
We develop a method for finding the number and shapes of the independently squeezed or amplified modes of a spatially-broadband, travelling-wave, frequency- and polarization-degenerate optical parametric amplifier in the general case of an elliptical Gaussian pump. The obtained results show that for tightly focused pump only one mode is squeezed, and this mode has a Gaussian TEM(00) shape. For larger pump spot sizes that support multiple modes, the shapes of the most-amplified modes are close to Hermite- or Laguerre-Gaussian profiles. These results can be used to generate matched local oscillators for detecting high amounts of squeezing and to design parametric image amplifiers that introduce minimal distortion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.