Our findings suggest that hybridization is possible between cultivated and wild brinjal in southern India. Thus, as part of the risk assessment process, we assume that transgenes from the crop could spread to wild brinjal populations that occur nearby.
Aim To determine the role of regional forcing on plot‐level species diversity and composition, and to quantify the relative importance of biogeographical and climatic factors in explaining woody plant diversity and composition at the local‐, island‐ and archipelago‐scale. Location Forty‐one tropical islands of the Indo‐Pacific region from Madagascar to Hawai‘i Island. Methods We analysed the diversity and composition of tropical woody plant communities located across 113 plots, 41 islands and 19 archipelagos. We used generalized linear mixed‐effects models and generalized dissimilarity models to determine the role of regional forcing at the island and archipelago scale and to assess the relative importance of biogeographical (area and isolation of islands or archipelagos, geographical distance between plots) and climatic factors in explaining differences in local diversity and composition (species turnover). Analyses were conducted at different geographical scales (local, island and archipelago) and taxonomic levels (species, genus and family). Results Variation in local (plot‐level) diversity (as species density, the number of species per 100 woody plants) was primarily explained by island and archipelago identity. Maximum species density was positively correlated with the area of an island (or archipelago) and negatively correlated with the isolation of an archipelago. Local climatic variability was also a significant predictor of species density, but less important than regional forcing. Climate variables explained < 20% of the variation in species turnover across all plots. The importance of geographical distance between plots relative to climate in driving species turnover decreased from the species to family level, and from the regional to island level. Main conclusions Regional forcing was the key driver of local diversity and composition on islands. Island area and archipelago isolation are likely driving local diversity through their effects on the pool of island species. Geographical distance between plots is the main factor explaining species turnover, while at higher taxonomic levels, climatic factors and niche conservatism are the main drivers.
Geographic isolation has played a significant role in shaping the contemporary patterns of genetic differentiation among these populations, many of which represent excellent candidates for in situ conservation. In two cases, close genetic affinity between cultivars and nearby wild/weedy populations suggests that gene flow has occurred between them. To our knowledge, this is the first study investigating population-level patterns of genetic diversity in wild relatives of eggplant.
Species abundance distributions (SADs) characterise the distribution of individuals among species. SADs have rarely been explored on islands and the ecological processes shaping SADs are still not fully understood. Notably, the relative importance of disturbance regime in shaping plant SADs remains poorly known. We investigate the relative importance of disturbance regime and island geography on the shape of SADs. We computed SADs for local tree communities in 1‐ha forest plots on 20 tropical islands in the Indo‐Pacific region. We used generalized linear models to analyse how the shape parameter of the gambin SAD model was related to the number of trees and the number of species. Regression analyses were also used to investigate how the shape of SADs, the number of trees and the number of species were related to cyclone disturbance (power dissipation index) and geography (island area and isolation), with direct and indirect (i.e. through the number of trees and species) effects assessed using variance partitioning. Cyclone disturbance was the best predictor of the shape of SADs, with higher power dissipation index producing more lognormal‐like distributions. This effect was mostly due to cyclones increasing the number of trees and decreasing the number of species. Island area affected the shape of SADs through its effect on the number of species, and larger islands were associated with higher species richness and more logseries‐like distributions. The effect of cyclones was stronger on smaller islands. Our results illustrate that disturbances can affect SADs in complex ways; directly and indirectly by impacting the number of species and individuals in communities, and these effects may be moderated by island‐specific characteristics, such as island area or isolation. Our results therefore suggest that multiple, interacting processes shape SADs and that studying SADs has the potential to contribute important new insights to the field of island biogeography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.